2017, 23, 9752-9755; (g) Wu, H.; Wang, Q.; Zhu, J., Chem. -Eur. J.
2017, 23, 13037-13041; (h) Zidan, M.; McCallum, T.; Thai-Savard, L.;
Barriault, L., Org. Chem. Front. 2017, 4, 2092-2096; (i) Godineau, E.;
Landais, Y., Chem. -Eur. J. 2009, 15, 3044-3055; (j) Wang, K.; Kong, W.,
Chin. J. Chem. 2018, 36, 247-256; (k) Liang, K.; Xia, C., Chin. J. Chem.
2017, 35, 255-270; (l) Wang, D.; Zhang, L.; Luo, S., Chin. J. Chem. 2018,
36, 311-320.
1986, 27, 4557-4560; (b) Shah, M.; Taschner, M. J.; Koser, G. F.; Rach,
N. L.; Jenkins, T. E.; Cyr, P.; Powers, D., Tetrahedron Lett. 1986, 27,
5437-5440; (c) Moriarty, R. M.; Vaid, R. K.; Koser, G. F., Synlett 1990,
365-383.
[10] (a) Miyazawa, K.; Yasu, Y.; Koike, T.; Akita, M., Chem. Commun. 2013,
49, 7249-7251; (b) Koike, T.; Akita, M., Org. Biomol. Chem. 2016, 14,
6886-6890; (c) Heitz, D. R.; Rizwan, K.; Molander, G. A., J. Org. Chem.
2016, 81, 7308-7313.
[4] (a) Sahoo, B.; Li, J. L.; Glorius, F., Angew. Chem., Int. Ed. 2015, 54,
11577-11580; (b) Suh, C. W.; Kim, D. Y., Tetrahedron Lett. 2015, 56,
5661-5664; (c) Woo, S. B.; Kim, D. Y., J. Fluorine Chem. 2015, 178,
214-218; (d) G. Bergonzini; C. Cassani; H. Lorimer-Olsson; J. Hçrberg;
Wallentin, C. J., Chem. -Eur. J. 2016, 22, 3292-3295; (e) Kwon, S. J.;
Kim, Y. J.; Kim, D. Y., Tetrahedron Lett. 2016, 57, 4371-4374; (f)
Romanov-Michailidis, F.; Guenee, L.; Alexakis, A., Angew. Chem., Int.
Ed. 2013, 52, 9266-9270; (g) Yin, Q.; You, S. L., Org. Lett. 2014, 16,
1810-1813; (h) Honeker, R.; Garza-Sanchez, R. A.; Hopkinson, M. N.;
Glorius, F., Chem. -Eur. J. 2016, 22, 4395-4399. (i) Zhang, J.-J.; Cheng,
Y.-B.; Duan, X.-H., Chin. J. Chem. 2017, 35, 311-315; (j) Feng, J.; Li, B.;
Jiang, J.; Zhang, M.; Ouyang, W.; Li, C.; Fu, Y.; Gu, Z., Chin. J. Chem.
2018, 36, 11-14; (k) Chen, Z. M.; Zhang, Q. W.; Chen, Z. H.; Li, H.; Tu, Y.
Q.; Zhang, F. M.; Tian, J. M., J. Am. Chem. Soc. 2011, 133, 8818-8821;
(l) Chu, X. Q.; Meng, H.; Zi, Y.; Xu, X. P.; Ji, S. J., Chem. Commun. 2014,
50, 9718-9721; (m) Huang, H. L.; Yan, H.; Yang, C.; Xia, W., Chem.
Commun. 2015, 51, 4910-4913; (n) Li, Y.; Liu, B.; Li, H. B.; Wang, Q.; Li,
J. H., Chem. Commun. 2015, 51, 1024-1026; (o) Song, R. J.; Tu, Y. Q.;
Zhu, D. Y.; Zhang, F. M.; Wang, S. H., Chem. Commun. 2015, 51,
749-752; (p) Xu, P.; Hu, K.; Gu, Z.; Cheng, Y.; Zhu, C., Chem. Commun.
2015, 51, 7222-7225; (q) Zhao, J.; Fang, H.; Song, R.; Zhou, J.; Han, J.;
Pan, Y., Chem. Commun. 2015, 51, 599-602.
[5] (a) Zhdankin, V. V.; Stang, P. J., Chem. Rev. 2002, 102, 2523-2584; (b)
Zhdankin, V. V.; Stang, P. J., Chem. Rev. 2008, 108, 5299-5358; (c)
Yoshimura, A.; Zhdankin, V. V., Chem. Rev. 2016, 116, 3328-3435; (d)
Wirth, T., Angew. Chem., Int. Ed. 2005, 44, 3656-3665; (e) Dohi, T.;
Kita, Y., Chem. Commun. 2009, 2073-2085. (f) Li, Y.; Hari, D. P.; Vita, M.
V.; Waser, J., Angew. Chem., Int. Ed. 2016, 55, 4436-4454.
[6] (a) Jia, K.; Zhang, F.; Huang, H.; Chen, Y., J. Am. Chem. Soc. 2016, 138,
1514-1517; (b) Jia, K.; Pan, Y.; Chen, Y., Angew. Chem., Int. Ed. 2017,
56, 2478-2481; (c) Jia, K.; Li, J.; Chen, Y., Chem. -Eur. J. 2018, 24,
3174-3177.
[11] See supporting information for details.
[12] Bock, C. R.; Connor, J. A.; Gutierrez, A. R.; Thomas J. Meyer; Whitten,
D. G.; Sullivan, B. P.; Nagle, J. K., J. Am. Chem. Soc. 1979, 101,
4815-4824.
[13] Prier, C. K.; Rankic, D. A.; MacMillan, D. W., Chem. Rev. 2013, 113,
5322-5363.
[14] Pan, Y.; Jia, K.; Chen, Y.; Chen, Y., Beilstein J. Org. Chem. 2018, 14,
1215-1221.
[15] Pitts, C. R.; Bloom, S.; Woltornist, R.; Auvenshine, D. J.; Ryzhkov, L. R.;
Siegler, M. A.; Lectka, T., J. Am. Chem. Soc. 2014, 136, 9780-9791.
[16] (a) Fujiwara, Y.; Domingo, V.; Seiple, I. B.; Gianatassio, R.; Del Bel, M.;
Baran, P. S., J. Am. Chem. Soc. 2011, 133, 3292-3295; (b) Chinzei, T.;
Miyazawa, K.; Yasu, Y.; Koike, T.; Akita, M., RSC Adv. 2015, 5,
21297-21300.
[17] (a) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y., J. Am. Chem.
Soc. 2014, 136, 2280-2283; (b) Huang, H.; Jia, K.; Chen, Y., Angew.
Chem., Int. Ed. 2015, 54, 1881-1884.
[18] The oxidation of alkylboronic acids by photoexcied Ir(III)* was
unlikely, see Supporting Information for details.
[19] The formation of oxirane in the reaction mixture was less than 5%. In
addition, when the oxirane was added to the reaction conditions, the
ring-opening adduct was only obtained in 32% yield after 36 hours.
The oxirane may be the reaction intermediate, however, it is not the
major reaction pathway.
[20] The use of 3,4-MeO-BIOAc 8 with lower oxidation potential slowed
down the reaction of BI-allylic alcohol complex with Ir(IV) for
intramolecular o-iodobenzoate addition, see ref. 6b,c.
[21] The [Ru(bpy)3](PF6)2 was required with some primary alkyl boronates
due to their higher oxidation potentials.
[22] CCDC 1868549 (3) contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from the
[7] (a) Darses, S.; Genet, J. P., Chem. Rev. 2008, 108, 288-325; (b) Boronic
Acids: Preparation and Applications in Organic Synthesis, Medicine
and Materials, ; Hall, DG, Ed. 2nd ed.; Wiley-VCH: Weinheim,
Germany: 2011.
[8] (a) Snape, T. J., Chem. Soc. Rev. 2007, 36, 1823-1842; (b) Song, Z. L.;
Fan, C. A.; Tu, Y. Q., Chem. Rev. 2011, 111, 7523-7556; (c) Martin, S. F.,
Tetrahedron 1980, 36, 419-460; (d) The use of N-acyloxyphthalimides
and O-acyl oximes as alkyl radical precursors for semipinacol
rearrangement appeared after the submission of this manuscript, see
Chem. Commun. 2018, 54, 8096-8099.
Cambridge
Ccdc.cam.ac.uk/data_request/cif.
Crystallographic
Data
Centre
via
www.
(The following will be filled in by the editorial staff)
Manuscript received: XXXX, 2017
Revised manuscript received: XXXX, 2017
Accepted manuscript online: XXXX, 2017
Version of record online: XXXX, 2017
[9] (a) Shah, M.; Taschner, M. J.; Koser, G. F.; Rach, N. L., Tetrahedron Lett.
This article is protected by copyright. All rights reserved.