Inorganic Chemistry
Article
2011, 5, 259−263. (c) Hasan, P.; Potts, S. E.; Carmalt, C. J.; Palgrave,
R. G.; Davies, H. O. Polyhedron 2008, 27, 1041−1048. (d) Ascenso, J.
R.; Dias, A. R.; Fernandes, J. A.; Martins, A. M.; Rodrigues, S. S. Inorg.
Chim. Acta 2003, 356, 279−287. (e) Smith, S. B.; Stephan, D. W.
Titanium. In Comprehensive Coordination Chemistry II; J. A.
McCleverty, I. A.; Meyer, T. J., Eds.; Elsevier: Oxford, U.K., 2003;
Vol. 4, pp 33−104. (f) Hollink, E.; Stephan, D. W. Zirconium and
Hafnium. In Comprehensive Coordination Chemistry II; J. A.
McCleverty, I. A.; Meyer, T. J., Eds.; Elsevier: Oxford, U.K., 2003;
Vol. 4, pp 105−173. (g) McAuliffe, C. A.; Barratt, D. S. Titanium. In
Comprehensive Coordination Chemistry; Wilkinson, G.; Gillard, R. D.;
McCleverty, J. A., Eds.; Pergamon: Oxford, U.K., 1987; Vol. 3, pp
324−361. (h) Fay, R. C. Zirconium and Hafnium. In Comprehensive
Coordination Chemistry; Wilkinson, G.; Gillard, R. D.; McCleverty, J.
A., Eds.; Pergamon: Oxford, U.K., 1987; Vol. 3, pp 363−451.
(i) Winter, C. H.; Lewkebandara, T. S.; Proscia, J. W.; Rheingold, A. L.
Inorg. Chem. 1994, 33, 1227−1229. (j) Lewkebandara, T. S.; Sheridan,
P. H.; Heeg, M. J.; Rheingold, A. L.; Winter, C. H. Inorg. Chem. 1994,
33, 5879−5889.
(9) (a) Bleau, J. E.; Carmalt, C. J.; O’Neill, S. A.; Parkin, I. P.; White,
A. J. P.; Williams, D. J. Polyhedron 2005, 24, 463−468. (b) Korolev, A.
V.; Rheingold, A. L.; Williams, D. S. Inorg. Chem. 1997, 36, 2647−
2655. (c) Jayaratne, K. C.; Yap, G. P. A.; Haggerty, B. S.; Rheingold, A.
L.; Winter, C. H. Inorg. Chem. 1996, 35, 4910−4920. (d) Carnell, P. J.
H.; Fowles, G. W. A. J. Less-Common Met. 1962, 4, 40−45. (e) Carnell,
P. J. H.; Fowles, G. W. A. J. Chem. Soc. 1959, 4113−18. (f) Fowles, G.
W. A.; Pleass, C. M. J. Chem. Soc. 1957, 2078−80.
reported, with the support of X-ray and DFT analyses, that
tungsten hexachloride is able to promote selective C−H bond
activation of tribenzylamine, followed by H intermolecular
transfer to afford a 1:1 mixture of the relevant iminium and
ammonium ions. This reaction represents a rare example of
well-defined interaction between a high-valent metal halide and
a tertiary amine. The reactivity of WCl6 with tertiary amines
different from tba will be the subject of future reports.
ASSOCIATED CONTENT
* Supporting Information
■
S
Figures S1−S5 show the calculated structures of 1, 2, 3A, 3B, 4,
and 5. Tables S1−S5 contain the related bonding parameters.
Cartesian coordinates of the DFT-optimized geometries are
included, along with structures in CIF files. This material is
CCDC reference numbers 980210 (1) and 980211 (2) contain
the supplementary crystallographic data for the X-ray studies
reported in this Paper. These data can be obtained free of
the Cambridge Crystallographic Data Centre, 12, Union Road,
Cambridge CB2 1EZ, U.K.; fax: (international) +44−1223/
AUTHOR INFORMATION
Corresponding Author
■
(10) (a) Edwards, D. A.; Fowles, G. W. A. J. Chem. Soc. 1961, 24−28.
(b) Edwards, D. A.; Fowles, G. W. J. Less-Common Met. 1961, 3, 181−
187.
(11) Brisdon, B. J.; Fowles, G. W. A.; Osborne, B. P. J. Chem. Soc.
1962, 1330−1334.
Notes
(12) (a) Sharma, B.; Chen, S.-J.; Abbott, J. K. C.; Chen, X.-T.; Xue,
Z.-L. Inorg. Chem. 2012, 51, 25−27. (b) Zhang, X.-H.; Chen, S.-J.; Cai,
H.; Im, H.-J.; Chen, T.; Yu, X.; Chen, X.; Lin, Z.; Wu, Y.-D.; Xue, Z.-L.
Organometallics 2008, 27, 1338−1341. (c) Waters, T.; Wedd, A. G.;
Ziolek, M.; Nowak, I. Niobium and Tantalum. In Comprehensive
Coordination Chemistry II; J. A. McCleverty, I. A.; Meyer, T. J., Eds.;
Elsevier: Oxford, U.K., 2003; Vol. 4, pp 242−312. (d) Bradley, D. C.;
Thomas, I. M. Can. J. Chem. 1962, 40, 449−454. (e) Bradley, D. C.;
Thomas, I. M. Can. J. Chem. 1962, 40, 1355−1360.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
CINECA is gratefully acknowledged for the availability of high-
performance computing resources and support.
■
REFERENCES
■
(1) (a) Campbell, R.; Cannon, D.; García-Alvarez, P.; Kennedy, A.
R.; Mulvey, R. E.; Robertson, S. D.; Saßmannshausen, J.; Tuttle, T. J.
Am. Chem. Soc. 2011, 133, 13706−13717. (b) Yoshikai, N.;
Mieczkowski, A.; Matsumoto, A.; Ilies, L.; Nakamura, E. J. Am.
Chem. Soc. 2010, 132, 5568−5569. (c) Zhang, X.; Fried, A.; Knapp, S.;
Goldman, A. S. Chem. Commun. 2003, 2060−2061. (d) Doye, S.
Angew. Chem., Int. Ed. 2001, 40, 3351−3353.
(13) Antler, M.; Laubengayer, A. W. J. Am. Chem. Soc. 1955, 77,
5250−5253.
(14) Straus, D. A.; Kamigaito, M.; Cole, A. P.; Waymouth, R. M.
Inorg. Chim. Acta 2003, 349, 65−68.
(15) Fuggle, J. C.; Sharp, D. W. A.; Winfield, J. M. J. Chem. Soc.,
Dalton Trans. 1972, 1766−1768.
(16) (a) Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpi, F. J. Am.
Chem. Soc. 1991, 113, 1047−1049. (b) Crimmins, M. T.; King, B. W.;
Tabet, E. A. J. Am. Chem. Soc. 1997, 119, 7883−7884. (c) Yoshida, Y.;
Hayashi, R.; Sumihara, H.; Tanabe, Y. Tetrahedron Lett. 1997, 38,
8727−8730.
(17) Matsumura, Y.; Nishimura, M.; Hiu, H. J. Org. Chem. 1996, 61,
2809−2812.
(18) Periasamy, M.; Srinivas, G.; Bharathi, P. J. Org. Chem. 1999, 64,
4204−4205.
(2) (a) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012,
112, 5879−5918. (b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K.
Angew. Chem., Int. Ed. 2012, 51, 8960−9009. (c) Murahashi, S.-I.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2443−2465.
(3) (a) Fukui, S.; Suzuki, N.; Wada, T.; Tanaka, K.; Nagao, H.
́
Organometallics 2010, 29, 1534−1536. (b) Ell, A. H.; Johnson, J. B.;
Backvall, J.-E. Chem. Commun. 2003, 1652−1653.
̈
(4) (a) Barrera, J.; Orth, S. D.; Harman, W. D. J. Am. Chem. Soc.
1992, 114, 7316−7318. (b) Orth, S. D.; Barrera, J.; Rowe, S. M.;
Helberg, L. E.; Harman, W. D. Inorg. Chim. Acta 1998, 270, 337−344.
(5) (a) Wang, J.-R.; Fu, Y.; Zhang, B.-B.; Cui, X.; Liu, L.; Guo, Q.-X.
Tetrahedron Lett. 2006, 47, 8293−8297. (b) Lu, C. C.; Peters, J. C. J.
Am. Chem. Soc. 2004, 126, 15818−15832. (c) Colman, P. J.; Hegdus,
L. S.; Norton, J. R.; Finke, G. R. Principles and Applications of
Organotransition Metal Chemistry, 2nd ed.; University Science Books:
Mill Valley, CA, 1987; p 725.
(19) Bharathi, P.; Periasamy, M. Org. Lett. 1999, 1, 857−859.
(20) (a) Funaioli, T.; Marchetti, F.; Pampaloni, G.; Zacchini, S.
Dalton Trans. 2013, 42, 14168−14177. (b) Dolci, S.; Marchetti, F.;
Pampaloni, G.; Zacchini, S. Dalton Trans. 2013, 42, 5635−5648.
(c) Marchetti, F.; Pampaloni, G. Chem. Commun. 2012, 48, 635−653.
(d) Dolci, S.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Inorg. Chem.
2011, 50, 3846−3848. (e) Marchetti, F.; Pinzino, C.; Zacchini, S.;
Pampaloni, G. Angew. Chem., Int. Ed. 2010, 49, 5268−5272.
(6) Leonard, N. J.; Hay, A. S.; Fulmer, R. W.; Gash, V. W. J. Am.
Chem. Soc. 1955, 77, 439−444.
(21) Konig, E. Magnetische Eigenschaften der Koordinations- und
̈
̈
Metallorganischen Verbindungen der Ubergangselemente in Landolt-
Bornstein, Zahlenwerte und Funktionen aus Naturwissenschaften und
(7) Hitchcock, P. B.; Handley, D. A.; Lee, T. H.; Leigh, G. J. J. Chem.
Soc., Dalton Trans. 2002, 4720−4725.
̈
(8) (a) Yuan, F.; Gu, Qu; Chen, X.; Tan, Y.; Guo, Y.; Yu, X. Chem.
Mater. 2012, 24, 3370−3379. (b) Ashoor, S. E. J. Chem. Chem. Eng.
Technik, 6th ed.; Springer-Verlag: Berlin, Gottingen, Heidelberg, 1966;
Vol. 2, p 16.
̈
3837
dx.doi.org/10.1021/ic5001683 | Inorg. Chem. 2014, 53, 3832−3838