[4]
[5]
[6]
[7]
H. Firouzabadi, N. Iranpoor A.A. Jafari, Aluminumdodecatungstophosphate (AlPW12O40), a versatile and a highly water tolerant green Lewis acid
catalyzes efficient preparation of indole derivatives, J. Mol. Catal. A: Chem. 244 (2005) 168-172.
M.L. Deb, P.J. Bhuyan, An efficient and clean synthesis of bis(indolyl)methanes in a protic solvent at room temperature, Tetrahedron Lett. 47 (2006)
1441-1443.
Z.H. Zhang, L. Yin, Y.M. Wang, An efficient and practical process for the synthesis of bis(indolyl)methanes catalyzed by zirconium tetrachloride,
Synthesis (2005) 1949-1954.
S.J. Ji, S.Y. Wang, Y. Zhang, T.P. Loh, Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free
conditions, Tetrahedron 60 (2004) 2051-2055.
[8]
[9]
S.J. Ji, M.F. Zhou, D.G. Gu, et al., Efficient synthesis of bis(indolyl)methanes catalyzed by lewis acids in ionic liquids, Synlett (2003) 2077-2079.
L.P. Mo, Z.C. Ma, Z.H. Zhang, CuBr2-catalyzed synthesis of bis(indolyl)methanes, Synth. Commun. 35 (2005) 1997-204.
[10]
M. Xia, S.H. Wang, W.B. Yuan, Lewis acid catalyzed electrophilic substitution of indole with aldehydes and schiff's bases under microwave solvent‐
free irradiation, Synth. Commun. 34 (2004) 3175-3182.
[11]
C. Ramesh, J. Banerjee, R. Pal, B. Das, Silica supported sodium hydrogen sulfate and amberlyst-15: two efficient heterogeneous catalysts for facile
synthesis of bis-and tris(1h-indol-3-yl)methanes from indoles and carbonyl compounds[1], Adv. Synth. and Catal. 345 (2003) 557-559.
[12]
[13]
[14]
[15]
[16]
[17]
D.M. Pore, U.V. Desai, T.S. Thopate, P.P. Wadgaonkar, A mild, expedient, solventless synthesis of bis(indolyl)alkanes using silica sulfuric acid as a
reusable catalyst, Arkivoc 12 (2006) 75-80.
K. Niknam, M.A. Zolfigol, T. Sadabadi, A. Nejati, Preparation of indolylmethanes catalyzed by metal hydrogen sulfates, J. Iran. Chem. Soc. 3 (2006)
318-322.
L.P. Zhang, Y.Q. Li, M.Y. Zhou, Efficient and eco-friendly process for the synthesis of bi (indolyl)-methanes catalyzed by sodium hydrogensulfate
monohydrate in ionic liquid n-butylpyridinium tetrafluoroborate, Chin. Chem. Lett. 17 (2006) 723-726.
C. Ramesh, N. Ravindranath, B. Das, Electrophilic substitution reactions of indoles with carbonyl compounds using ceric ammonium nitrate: A novel and
efficient method for the synthesis of di- and tri-indolylmethanes, J Chem. Res. Synop. (2003) 72-74.
H. Koshima, W. Matsuaka, N-Bromosuccinimide catalyzed condensations of indoles with carbonyl compounds under solvent-free conditions, J.
Heterocycl. Chem. (2002) 1089-1091.
A. Khalafi-Nezhad, A. Parhami, A. Zare, et al., Trityl chloride as a novel and efficient organic catalyst for room temperature preparation of
bis(indolyl)methanes under solvent-free conditions in neutral media, Synthesis (2008) 617-621.
[18]
[19]
J.W. Bode, Emerging methods in amide- and peptide-bond formation, Curr. Opin. Drug Discovery Dev 9 (2006) 765-775.
H.R. Shaterian, M. Ghashang, M. Feyzi Silica sulfuric acid as an efficient catalyst for the preparation of 2H-indazolo[2,1-b]phthalazine-triones, Appl.
Catal. A 345 (2008) 128-133.
[20]
T. Yamazaki, K.I. Nunami, M. Goodman, Cyclic retro-inverso dipeptides with two aromatic side chains. II. Conformational analysis, Biopolymers 31
(1991) 1513-1528.
[21]
[22]
M. Goodman, H. Shao, Peptidomimetic building blocks for drug discovery: an overview, Pure. Appl. Chem. 68 (1996) 1303-1308.
N.P. Selvam, S. Saranye, P.T. Perumal, A convenient and efficient protocol for the synthesis of symmetrical N,N′-alkylidine bisamides by sulfamic acid
under solvent-free conditions, Can. J. Chem. 85 (2008) 32-38.
[23]
A. Milenkovic, F. Fache, R. Faure, M. Lemaire, Activated imines and aminal derivatives: Potential precursors of beta-amino acids, Synth. Commun. 29
(1999) 1535-1546.
[24]
[25]
[26]
[27]
S. Zhu, G. Xu, Q. Chu, Y. Xu, C. Qui, Synthesis of Fluorine-Containing Symmetrical N,. N-Alkylidene Bisamides, J. Fluorine Chem. 93 (1999) 69-71.
G.S. Bhatnagar, K.C. Pandya, Condensation of aldehydes with amides, Proceedings-Indian Academy of Sciences, Section A 24 (1946) 487-495.
R.K. Mehra, K.C. Pandya, The condensation of aldehydes with amides, Proceedings-Indian Academy of Sciences, Section A 10 (1939) 285-288.
D.J. Upadhya, S.D. Samant, A facile and efficient pinacol–pinacolone rearrangement of vicinal diols using ZnCl2 supported on silica as a recyclable
catalyst, Applied Catalysis A: General 340 (2008) 42-51.
[28]
H.A. Soliman, A.Y. Mubarak, A. El-Mekabati, S.S. Elmorsy, SiO2/ZnCl2-catalyzed heterocyclic synthesis: green, rapid and efficient one-pot synthesis of
14-H-dibenzo[a, j]xanthenes, 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines under solvent-free conditions, Chem. Sci. Trans. 3 (2014)
819-825.
[29]
[30]
H.A. Soliman, A.Y. Mubarak, A. El-Mekabati, H.M. Awad, S.S. Elmorsy, Ecofriendly synthesis of amidochloroalkyl naphthols, cyclization of the
product to oxazepinones for biological evaluation, Monatsh Chem. (2015) DOI :10.1007/s00706-015-1536-2.
a) H.A. Soliman, F.M.E. Abdel-Megeid, S.S. Elmorsy, Silicon tetrachloride-induced regioselective reaction of N-bromosuccinimide with arylidene
malononitrile and with α, β-unsat-urated ketones, Org. Chem. An Indian J. 11 ( 2015) 223-228.
(b) H.A. Soliman, T.K. Khatap, Efficient heterogeneous catalytic one-pot, three component synthesis of γ-hydroxy-β-ketoamide, Egypt. J. of chem. 57
(2014) 129-142.
(c) H.A. Soliman, T.A. Salama, Silicon tetrachloride-induced green and efficient MCR protocol for the synthesis of 1,8-dioxo-decahydroacridines and
their transformation to novel functionalized pyrido-tetrazolo[1,5-a]azepine derivatives, Org. Chem. An Indian J. 10 ( 2014) 63-68.
(d) T.K. Khatab, K.A.M. El-Bayouki, W.M. Basyouni, A new and facile tetrachlorosilane-promoted one-pot condensation for the synthesis of a novel
series of tetracyclic 1,5-thiazepines, Tetrahedron Lett. 55 (2014) 6039-6041;
(e) H.A. Soliman, T.A. Salama, Silicon-mediated highly efficient synthesis of 1,8-dioxo-octahydroxanthenes and their transformation to novel
functionalized pyrano-tetrazolo[1,5-a] azepine derivatives, Chin. Chem. Lett. 24 (2013) 404-406.
(f) T.K. Khatab, K.A.M. El-Bayouki, W.M. Basyouni, An efficient synthesis of β-acylureas via a three-component, one-pot synthesis using TCS/ZnCl2,
Tetrahedron Lett. 52 (2011) 1448-51
[31]
[32]
[33]
[34]
[35]
[36]
V.T. Kamble, B.P. Bandgar, S.N. Bavikar, Highly efficient synthesis of bis(indolyl)methanes catalyzed by sodium tetrafluoroborate, Chin. J. Chem. 25
(2007)13-17.
S. Sheng, Q. Wang, Y. Ding, X. Liu, M. Cai, Synthesis of bis(indolyl)methanes using recyclable PEG-supported sulfonic acid as catalyst, Catal. Lett. 128
(2009) 418-422.
R. Ghorbani-Vaghei, H. Veisi, H. Keypour, A.A. Dehghani-Firouzabadi, A practical and efficient synthesis of bis(indolyl)methanes in water, and
synthesis of di-, tri-, and tetra(bis-indolyl)methanes under thermal conditions catalyzed by oxalic acid dehydrate, Mol. Divers 14 (2010) 87-96.
M.R.M. Shafiee Silica-supported barium chloride (SiO2–BaCl2)—Efficient and heterogeneous catalyst for the environmentally friendly preparation of
N,N′-alkylidene bisamides under solvent-free conditions, Can. J. Chem. 89 (2011) 555-561
M.R.M. Shafiee, One-pot preparation of N,N′-alkylidene bisamide derivatives catalyzed by silica supported polyphosphoric acid (SiO2-PPA), J. Saudi
Chem. Soc. 18 (2014)115-119.
B.F. Mirjalili, M.A. Mirhoseini, Tandem synthesis of N,N-alkylidenebisamides promoted by nano-SnCl4.SiO2, J. Chem. Sci. 125 (2013)1481-1486.
Page 6 of 6