The Journal of Organic Chemistry
Article
(THAP, negative mode): m/z 2829.5 [M − H]−; M calcd for
C106H143N26O52P5S2 2830.7.
CH2-NH2); 1.44 (s, 9H, CH3) ppm; 13C NMR CDCl3, 100 MHz) δ
156.2, 79.2, 43.2, 41.8, 28.4 ppm; ESI MS (positive mode) m/z
161.13 [M + H]+; M calcd for C7H16N2O2 160.12.
[Protected maleimido]-[N-(CH2 CH2 NH2 )Gly]-[N-
(CH2CH2Phenol)Gly]-[N-(CH2CH2OH)Gly]-[N-(Propargyl)Gly]-[N-
(CH2CH2Phenol)Gly]-[N-(CH2CH2NH2)Gly]-[N-(CH2CH2OH)Gly]-
[N-(CH2CH2SH)Gly]-Gly-NH2, 23. Peptoid 23 was assembled on
100 mg of resin (f = 0.72 mmol/g). Treatment of the peptoid-resin
22 with TFA/m-cresol/TIS/H2O 90:5:2.5:2.5, 2 × 1 h, followed by
purification at the semipreparative scale (linear gradient from 20 to
40% of B in 30 min, tR = 12.0 min), afforded 23 as a white solid (3.0
μmol, 4.1%). Analytical HPLC: acidic conditions, linear gradient
from 20 to 40% of B in 30 min, tR = 9.7 min. MALDI-TOF MS
(THAP/CA, positive mode, CA = citric acid): m/z 1194.7 [M −
furan + H]+, 1290.8 [M + H]+; M calcd for C60H83N13O17S 1289.6,
M − furan calcd for C54H75N13O16S 1193.5. MALDI-TOF MS after
reaction with H2O2 (THAP/CA, negative mode): m/z 1240.7 [M −
furan + 48 − H]−; M − furan + 48 calcd for C54H75N13O19S 1241.5.
Cyclic Maleimido*-[N-(CH2CH2NH2)Gly]-[N-(CH2CH2Phenol)-
Gly]-[N-(CH2CH2OH)Gly]-[N-(Propyne)Gly]-[N-(CH2CH2Phenol)-
Gly]-[N-(CH2CH2NH2)Gly]-[N-(CH2CH2OH)Gly]-[N-(CH2CH2SH)-
Gly]*-Gly-NH2 24. Compound 23 (100 nmol) was dissolved in the
H2O/MeOH solution (1 mL, 100 μM) and heated in a MW oven
according to the general procedures. MeOH was removed under
reduced pressure. The desired product (24) was obtained in 79%
yield (based on the HPLC trace). Analytical HPLC: acidic
ASSOCIATED CONTENT
* Supporting Information
■
S
HPLC traces of the compounds prepared, commercially
available building blocks used for peptide and peptoid
assembly, and 1H and 13C NMR spectra of compounds
synthesized according to described procedures. This material
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by funds from the Ministerio de
́
Economia y Competitividad (Grant No. CTQ2010-21567-
conditions, linear gradient from 20 to 40% of B in 30 min, tR
=
C02-01 and the project RNAREG, Grant No. CSD2009-
00080, funded under the programme CONSOLIDER
INGENIO 2010), and the Generalitat de Catalunya
(2009SGR-208). X.E. was a recipient fellow of the MINECO.
15.8 min. MALDI-TOF MS (THAP/CA, positive mode): m/z
1194.7 [M + H]+; M calcd for C54H75N13O16S 1193.5. MALDI-TOF
MS after reaction with H2O2 (THAP/CA, positive mode): m/z
1210.7 [M + 16 + H]+; M + 16 calcd for C54H75N13O17S 1209.5.
Conjugate 25 [Cyclic Maleimido*-[N-(CH2CH2NH2)Gly]-[N-
(CH2CH2Phenol)Gly]-[N-(CH2CH2OH)Gly]-[N-(Propyne)Gly]-[N-
(CH2CH2Phenol)Gly]-[N-(CH2CH2NH2)Gly]-[N-(CH2CH2OH)Gly]-
[N-(CH2CH2SH)Gly]*-Gly-NH2] + AZT. A 0.5 mM solution of
CuSO4 in water (50 μL, 25 nmol) and a 12 mM solution of sodium
ascorbate in water (50 μL, 600 nmol) were mixed in a microwave
flask under an Ar atmosphere and stirred during 5 min. Then TBTA
(tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine) (50 μL of a 0.5
mM solution in MeOH:H2O 3:2, 24 nmol), AZT (3′-azido-3′-
deoxythymidine) (110 μL of a 2 mM aqueous solution, 200 nmol),
and compound 24 (100 μL of a 290 μM aqueous solution, 29 nmol)
were added. The mixture was heated in a microwave oven for 1 h at
90 °C. MeOH was then removed under reduced pressure. The
desired product (25) was obtained in 90% yield (based on the
HPLC trace, calculated from compound 24). Analytical HPLC:
acidic conditions, linear gradient from 5 to 50% of B in 30 min, tR =
17.1 min. MALDI-TOF MS (DHB, positive mode): m/z: 1462.4 [M
+ H]+, 1484.3 [M + Na]+; M calcd for C64H88N18O20S 1460.6.
S-Trityl Cysteamine Hydrochloride. Trityl chloride (279 mg,
1.6 mmol) and cysteamine hydrochloride (200 mg, 1.8 mmol) were
dissolved in DMF (1.5 mL) and stirred overnight at room
temperature. The reaction was then quenched with cold water (10
mL), and the precipitated formed was filtered and washed with cold
water (3 × 5 mL). A white solid (480 mg, 85% yield) was obtained:
REFERENCES
■
(1) Bock, J. E.; Gavenonis, J.; Kritzer, J. A. ACS Chem. Biol. 2013,
8, 488−499.
(2) Rezai, T.; Bock, J. E.; Zhou, M. V.; Kalyanaraman, C.; Lokey, R.
S.; Jacobson, M. P. J. Am. Chem. Soc. 2006, 128, 14073−14080.
(3) Rezai, T.; Yu, B.; Millhauser, G. L.; Jacobson, M. P.; Lokey, R.
S. J. Am. Chem. Soc. 2006, 128, 2510−2511.
(4) Boturin, D.; Coll, J.-L.; Garanger, E.; Favrot, M.-C.; Dumy, P. J.
Am. Chem. Soc. 2004, 126, 5730−5739.
(5) Birts, C. N.; Nijjar, S. K.; Mardle, C. A.; Hoakwie, F.; Duriez, P.
J.; Blaydes, J. P.; Tavassoli, A. Chem. Sci. 2013, 4, 3046−3057.
(6) Zhou, H.; Liu, L.; Huang, J.; Bernard, D.; Karatas, H.; Navarro,
A.; Lei, M.; Wang, S. J. Med. Chem. 2013, 56, 1113−1123.
(7) Spurr, I. B.; Birts, C. N.; Cuda, F.; Benkovic, S. J.; Blaydes, J. P.;
Tavassoli, A. ChemBioChem 2012, 13, 1628−1634.
(8) Smith, J. W.; Ruggeri, Z. M.; Kunicki, T. J.; Cheresh, D. A. J.
Biol. Chem. 1992, 265, 12267−12271.
(9) Gurrath, M.; Muller, G.; Kessler, H.; Aumailley, M.; Timpl, R.
̈
Eur. J. Biochem. 1992, 210, 911−921.
(10) Kiptoo, P.; Buyuktimkin, B.; Badawi, A. H.; Stewart, J.;
̈
̈
Ridwan, R.; Siahaan, T. J. Clin. Exp. Immunol. 2013, 172, 23−36.
(11) Mulder, G. E.; Kruijtzer, J. A. W.; Liskamp, R. M. J. Chem.
Commun. 2012, 48, 10007−10009.
1
Rf (hexanes/AcOEt/TEA 75:20:5) = 0.68; H NMR (CD3OD, 400
̀ ́
(12) Guell, I.; Vila, S.; Micalo, L.; Badosa, E.; Montesinos, E.;
̈
MHz) δ 7.5−7.1 (m, 15H, aromatics), 2.58 (t, J = 6.9, 2H, CH2-
NH2), 2.47 (t, J = 6.8, 2H, S-CH2) ppm; 13C NMR (CD3OD, 100
MHz) δ 145.6, 130.7, 129.2, 128.2, 68.4, 39.7, 30.1; ESI MS (positive
mode) m/z 319.9 [M + H]+, 639.0 [2M + H]+; M calcd for
C21H21NS 319.14.
Planas, M.; Feliu, L. Eur. J. Org. Chem. 2013, 4933−4943.
(13) Pal, S.; Mitra, K.; Azmi, S.; Ghosh, J. K.; Chakraborty, T. K.
Org. Biomol. Chem. 2011, 9, 4806−4810.
(14) Guo, J.; Hu, H.; Zhao, Q.; Wang, T.; Zou, Y.; Yu, S.; Wu, Q.;
Guo, Z. ChemMedChem 2012, 7, 1496−1503.
N-Boc-ethylenediamine. A solution of Boc anhydride (1.2 g, 5.5
mmol) in DCM (80 mL) was added dropwise during 15 min to a
solution of ethylenediamine (2.2 mL, 33.5 mmol) in DCM (10 mL).
The mixture was stirred for 1 h at 0 °C and overnight at room
temperature. Solvent was removed under reduced pressure, and the
crude was dissolved in aqueous potassium carbonate (50 mL). This
solution was extracted with DCM (3 × 50 mL). The organic fraction
was dried over MgSO4 and filtered and the solvent removed under
reduced pressure. A colorless oil (857 mg, 60% yield) was obtained:
(15) Shirazi, A. N.; Tiwari, R.; Chhikara, B. S.; Mandal, D.; Parang,
K. Mol. Pharmacol. 2013, 10, 488−499.
(16) Chapman, R.; Bouten, P. J. M.; Hoogenboom, R.; Jolliffe, K.
A.; Perrier, S. Chem. Commun. 2013, 49, 6522−6524.
(17) Chapman, R.; Koh, M. L.; Warr, G. G.; Jolliffe, K. A.; Perrier,
S. Chem. Sci. 2013, 4, 2581−2589.
(18) Cai, J.; Rosenzweig, B. A.; Hamilton, A. D. Chem.Eur. J.
2009, 15, 328−332.
1
Rf (hexanes/AcOEt/TEA 47.5:47.5:5) = 0.2; H NMR (CDCl3, 400
(19) Ghosh, P. S.; Hamilton, A. D. J. Am. Chem. Soc. 2012, 134,
13208−13211.
MHz) δ 3.16 (q, J = 5.9, 2H, CO-NH-CH2); 2.79 (t, J = 5.7, 2H,
2852
dx.doi.org/10.1021/jo500427c | J. Org. Chem. 2014, 79, 2843−2853