Organic Letters
Letter
cross-linked polystyrene support significantly simplifies product
purification and permits excellent siloxane polymer reuse with
diverse nucleophiles and electrophiles, rendering this tactic a
powerful new tool in organic synthesis that could provide
“greener” and more sustainable chemical processes. Studies to
expand the application of polymer-supported siloxane-transfer
agent in other bond-forming processes continue in our
laboratory.
Scheme 5. Recyclability of PSTA-II Using Multiple
Nucleophiles and Electrophiles
ab
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and characterization data for all new
compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by the NIH through Grant No.
GM-29028. We also thank Bruno Melillo, Stephen P. Brown,
and Dr. Rakesh Kohli at Department of Chemistry, University
of Pennsylvania, for helpful suggestions on polymer selection,
polymer handling, and assistance with HRMS, respectively.
REFERENCES
■
(1) (a) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de
Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004.
(b) Seechurn, C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V.
Angew. Chem., Int. Ed. 2012, 51, 5062.
(2) (a) Smith, A. B., III; Hoye, A. T.; Martinez-Solorio, D.; Kim, W.-
S.; Tong, R. J. Am. Chem. Soc. 2012, 134, 4533. (b) Martinez-Solorio,
D.; Hoye, A. T.; Nguyen, M. H.; Smith, A. B., III. Org. Lett. 2013, 15,
2454.
(3) (a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979,
20, 3437. (b) Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun.
1979, 866. Reviews: (c) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95,
2457. (d) Suzuki, A.; Yamamoto, Y. Chem. Lett. 2011, 40, 894.
(4) (a) Negishi, E.; Baba, S. Chem. Commun. 1976, 596. (b) Baba, S.;
Negishi, E. J. Am. Chem. Soc. 1976, 98, 6729. Reviews: (c) Negishi, E.
Acc. Chem. Res. 1982, 15, 340. (d) Negishi, E.; Hu, Q.; Huang, Z.;
Qian, M.; Wang, G. Aldrichimica Acta 2005, 38, 71.
a
Siloxane loading was 0.74 mmol/g. All reactions were performed on
b
0.2 mmol scale of the aryl or alkenyl halides. After polymer removal,
product mixture was treated with TBAF to remove the silyl group
prior to purification.
Cross-coupling reactions between phenyllithium and electron-
deficient aryl bromides also readily provided the desired
products in good yield (entries 8 and 10). Equally successful,
CCRs employing alkenylorganolithiums proceeded in good
yield with retention of the alkene geometry (entries 4 and 5).
In all cases, no evidence of homocoupled products was
observed. Pleasingly, cross-coupling reactions employing
recovered PSTA-II are as high yielding as those employing
the freshly made PSTA-I. Furthermore, PSTA-II offers an
operationally convenient protocol in which the polymer could
be removed directly from the CCR products via simple
filtration without the need to introduce additional solvent to
induce polymer precipitation. Importantly, PSTA-II permits
the cross-coupling of substrates containing highly sensitive
functional groups such as a nitrile and ketone (entries 6, 8, 9,
and 10), demonstrating the unique advantage offered by this
cross-coupling protocol over other reported CCR methods7,8
employing organolithium reagents.
(5) (a) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636.
(b) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4992.
Reviews: (c) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
(d) Mitchell, T. N. Synthesis 1992, 803.
(6) (a) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918.
(b) Hatanaka, Y.; Hiyama, T. Synlett 1991, 845. (c) Hiyama, T.;
Hatanaka, T. Pure Appl. Chem. 1994, 66, 1471. (d) Hiyama, T. J.
Organomet. Chem 2002, 653, 58. (e) Nakao, Y.; Imanaka, H.; Sahoo, A.
K.; Yada, A.; Hiyama, T. J. Am. Chem. Soc. 2005, 127, 6952. (f) Nakao,
Y.; Takeda, M.; Matsumoto, T.; Hiyama, T. Angew. Chem., Int. Ed.
2010, 49, 4447. (g) Chen, J.; Tanaka, M.; Sahoo, A. K.; Takeda, M.;
Yada, A.; Nakao, Y.; Hiyama, T. Bull. Chem. Soc. Jpn. 2010, 83, 554.
(h) Nakao, Y.; Hiyama, T. Chem. Soc. Rev. 2011, 40, 4893. (i) Tang, S.;
Takeda, M.; Nakao, Y.; Hiyama, T. Chem. Commun. 2011, 47, 307.
(j) Denmark, S. E.; Choi, J. Y. J. Am. Chem. Soc. 1999, 121, 5821.
(k) Denmark, S. E.; Sweis, R. F. J. Am. Chem. Soc. 2004, 126, 4876.
Reviews: (l) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835.
(m) Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41, 1486.
(7) (a) Murahashi, S.-I.; Tanba, Y.; Yamamura, M.; Moritani, I.
Tetrahedron Lett. 1974, 15, 3749. (b) Murahashi, S.-I.; Tanba, Y.;
In summary, the rational design, synthesis, and validation of a
greatly improved second-generation insoluble polymer-sup-
ported siloxane-transfer agent for use in palladium-catalyzed
cross-coupling reactions has been achieved. Importantly, the
2072
dx.doi.org/10.1021/ol5007086 | Org. Lett. 2014, 16, 2070−2073