Q. Xiao, J. Sheng, Q. Ding, J. Wu
FULL PAPER
3980; Angew. Chem. Int. Ed. 2004, 43, 3890; b) J. Panteleev, L.
Zhang, M. Lautens, Angew. Chem. 2011, 123, 9255; Angew.
Chem. Int. Ed. 2011, 50, 9089; c) S. H. Kim, S. H. Park, J. H.
Choi, S. Chang, Chem. Asian J. 2011, 6, 2618; d) P. Lu, Y.
Wang, Chem. Soc. Rev. 2012, 41, 5687; e) T. Miura, M. Murak-
ami, Chem. Commun. 2007, 217; f) M. Malacria, Chem. Rev.
1996, 96, 289; g) K. C. Nicolaou, T. Montagnon, S. A. Snyder,
Chem. Commun. 2003, 551; h) K. C. Nicolaou, D. J. Edmonds,
P. G. Bulger, Angew. Chem. 2006, 118, 7292; Angew. Chem. Int.
Ed. 2006, 45, 7134; i) D. Enders, C. Grondal, M. R. M. Hüttl,
Angew. Chem. 2007, 119, 1590; Angew. Chem. Int. Ed. 2007,
46, 1570; j) L. F. Tietze, G. Brasche, K. Gericke, Domino Reac-
tions in Organic Synthesis Wiley-VCH, Weinheim, Germany,
2006; k) L. F. Tietze, M. A. Düfert, T. Hungerland, K. Oum,
T. Lenzer, Chem. Eur. J. 2011, 17, 8452.
7.43–7.39 (m, 1 H), 7.21–7.19 (m, 1 H), 7.08 (d, J = 2.4 Hz, 1 H),
3.93 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 161.4, 151.2,
149.6, 139.7, 138.2, 129.4 (q, J = 306.9 Hz), 129.0, 128.8, 127.0,
126.8, 123.6, 120.9, 115.9, 105.3, 55.6 ppm. 19F NMR (378 MHz,
CDCl3): δ = –39.10 ppm. HRMS (ESI): calcd. for C17H13F3NOS+
[M + H+] 336.0664; found 336.0658.
6,7-Dimethoxy-3-phenyl-1-[(trifluoromethyl)thio]isoquinoline
(3j):
1
Yield 58.6 mg (80%). H NMR (400 MHz, CDCl3): δ = 8.10 (d, J
= 7.6 Hz, 2 H), 7.86 (s, 1 H), 7.46 (t, J = 7.2 Hz, 2 H), 7.40–7.37
(m, 2 H), 7.05 (s, 1 H), 4.02 (s, 3 H), 4.00 (s, 3 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 153.5, 150.9, 149.8, 146.7, 138.3, 134.4,
129.5 (q, J = 307.2 Hz), 128.8, 128.7, 126.5, 124.6, 115.9, 105.5,
103.6, 56.2 ppm. 19F NMR (378 MHz, CDCl3): δ = –39.11 ppm.
HRMS (ESI): calcd. for C18H15F3NO2S+ [M + H+] 366.0770;
found 366.0774.
[3] a) R. Filler, Y. Kobayashi, in: Biomedicinal Aspects of Fluorine
Chemistry; Elsevier: Amsterdam, 1982; b) In Fluorine, in: Bio-
organic Chemistry (Eds.: J. T. Welch, S. Eswarakrishman),
Wiley: New York, 1991; c) Bioorganic and Medicinal Chemistry
of Fluorine (Eds.: J.-P. Begue, D. Bonnet-Delpon), Wiley, Ho-
boken, 2008.
[4] For some reviews on the synthesis of fluorinated heterocycles,
see: a) V. A. Petrov, in: Fluorinated Heterocyclic Compounds:
Synthesis Chemistry, and Applications, John Wiley & Sons, Inc.,
Hoboken, NJ, 2009; b) E. V. Nosova, G. N. Lipunova, V. N.
Charushin, Q. N. Chupakhin, J. Fluorine Chem. 2010, 131,
1267; c) S. Zhu, Y. Wang, W. Peng, L. Song, G. Jin, Curr. Org.
Chem. 2002, 6, 1057; d) M. J. Silvester, Aldrichim. Acta 1991,
24, 31. For some selective examples, see: e) P. Kwiatkowski,
T. D. Beeson, J. C. Conrad, D. W. C. MacMillan, J. Am. Chem.
Soc. 2011, 133, 1738; f) Y. Kishi, H. Nagura, S. Inagi, T. Fu-
chigami, Chem. Commun. 2008, 3876; g) S. Fustero, S. Catalan,
M. Sanchez-Rosello, A. Simon-Fuentes, C. del Pozo, Org. Lett.
2010, 12, 3484; h) S. Ye, J. Liu, J. Wu, Chem. Commun. 2012,
48, 5028.
[5] For some recent patents involving fluorinated isoquinolines,
see: a) R. Yamada, M. Seto, U. S. Patent 201093789, 2010; b)
Q. Zeng, C. C. Yuan, G. Yao, X. Wang, S. Tadesse, D. J. S.
Jean Jr., A. Reichelt, Q. Liu, F.-T. Hong, N. Han, C. Fotsch,
C. Davis, M. P. Bourbeau, K. S. Ashton, J. G. Allen, WO
201083246, 2010; c) K. Matsubara, A. Iesato, A. Oomura, K.
Kawasaki, R. Yamada, M. Seto, U. S. Patent 200948223 A1,
2009.
7-Fluoro-3-phenyl-1-[(trifluoromethyl)thio]isoquinoline (3k): Yield
1
57.0 mg (88%). H NMR (400 MHz, CDCl3): δ = 8.14–8.12 (m, 2
H), 8.00 (s, 1 H), 7.88–7.85 (m, 1 H), 7.79–7.76 (m, 1 H), 7.51–7.45
(m, 3 H), 7.43–7.39 (m, 1 H) ppm. 13C NMR (100 MHz, CDCl3):
δ = 161.1 (d, J = 250.1 Hz), 150.5, 149.5, 137.7, 134.6, 130.5 (d, J
= 8.6 Hz), 129.2, 129.1 (q, J = 307.8 Hz), 128.9, 128.5 (d, J =
8.5 Hz), 126.7, 116.2, 109.1 (d, J = 22.8 Hz) ppm. 19F NMR
(378 MHz, CDCl3): δ = –39.16, –108.8 (Ar-F) ppm. HRMS (ESI):
calcd. for C16H10F4NS+ [M + H+] 324.0465; found 324.0458.
7-Chloro-3-phenyl-1-[(trifluoromethyl)thio]isoquinoline (3l): Yield
1
51.7 mg (76%). H NMR (400 MHz, CDCl3): δ = 8.16–8.15 (m, 3
H), 78.03 (s, 1 H), 7.84 (d, J = 8.8 Hz, 1 H), 7.68–7.65 (m, 1 H),
7.53–7.49 (m, 2 H), 7.46–7.42 (m, 1 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 151.1, 149.5, 137.6, 135.8, 132.7, 132.2, 129.4, 129.3,
129.0 (q, J = 300.7 Hz), 128.9, 128.6, 126.8, 124.2, 115.9 ppm. 19F
NMR (378 MHz, CDCl3): δ = –39.10 ppm. HRMS (ESI): calcd.
for C16H10ClF3NS+ [M + H+] 340.0169; found 340.0155.
5-Phenyl-7-[(trifluoromethyl)thio]thieno[2,3-c]pyridine (3m): Yield
1
56.0 mg (90%). H NMR (400 MHz, CDCl3): δ = 8.10–8.07 (m, 3
H), 7.71 (d, J = 5.6 Hz, 1 H), 7.50–7.46 (m, 2 H), 7.43–7.40 (m, 2
H) ppm. 13C NMR (100 MHz, CDCl3): δ = 153.0, 147.3, 141.8,
139.3, 138.3, 131.2, 129.3 (q, J = 308.2 Hz), 129.1, 128.9, 126.9,
124.1, 114.7 ppm. 19F NMR (378 MHz, CDCl3): δ = –38.89 ppm.
[6] a) T. Xu, G. Liu, Org. Lett. 2012, 14, 5416; b) C. Si, A. G.
Myers, Angew. Chem. 2011, 123, 10593; Angew. Chem. Int. Ed.
2011, 50, 10409.
HRMS (ESI): calcd. for C14H9F3NS2 [M + H+] 312.0123; found
+
[7] For selected examples, see: a) C. Chen, L. Chu, F.-L. Qing, J.
Am. Chem. Soc. 2012, 134, 12454; b) F. Baert, J. Colomb, T.
Billard, Angew. Chem. 2012, 124, 10528; Angew. Chem. Int. Ed.
2012, 51, 10382; c) G. Teverovskiy, D. S. Surry, S. L. Buchwald,
Angew. Chem. 2011, 123, 7450; Angew. Chem. Int. Ed. 2011,
50, 7312; d) C.-P. Zhang, D. A. Vicic, J. Am. Chem. Soc. 2012,
134, 183; e) Z. Weng, W. He, C. Chen, R. Lee, D. Tan, Z. Lai,
D. Kong, Y. Yuan, K.-W. Huang, Angew. Chem. 2013, 125,
1588; Angew. Chem. Int. Ed. 2013, 52, 1548; f) C. Chen, Y. Xie,
L. Chu, R.-W. Wang, X. Zhang, F.-L. Qing, Angew. Chem.
2012, 124, 2542; Angew. Chem. Int. Ed. 2012, 51, 2492; g) C.-
P. Zhang, D. A. Vicic, Chem. Asian J. 2012, 7, 1756; h) X. Shao,
X. Wang, T. Yang, L. Lu, Q. Shen, Angew. Chem. 2013, 125,
3541; Angew. Chem. Int. Ed. 2013, 52, 3457; i) L. D. Tran, I.
Popov, O. Daugulis, J. Am. Chem. Soc. 2012, 134, 18240.
[8] a) A. Tlili, T. Billard, Angew. Chem. 2013, 125, 6952; Angew.
Chem. Int. Ed. 2013, 52, 6818; b) Y. Yang, X. Jiang, F.-L. Qing,
J. Org. Chem. 2012, 77, 7538; c) A. Ferry, T. Billard, E. Bacqué,
B. R. Langlois, J. Fluorine Chem. 2012, 134, 160; d) A. Ferry,
T. Billard, B. R. Langlois, E. Bacqué, J. Org. Chem. 2008, 73,
9362; e) A. Ferry, T. Billard, B. R. Langlois, E. Bacqué, Angew.
Chem. 2009, 121, 8703; Angew. Chem. Int. Ed. 2009, 48, 8551;
f) A. Ferry, T. Billard, B. R. Langlois, E. Bacqué, J. Org. Chem.
2008, 73, 9362; g) Q. Xiao, J. Sheng, Z. Chen, J. Wu, Chem.
Commun. 2013, 49, 8647.
312.0114.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data, 1H and 13C
NMR spectra of 3.
Acknowledgments
Financial support from the National Natural Science Foundation
of China (NSFC) (grant numbers 21032007, 21172038) is gratefully
acknowledged.
[1] a) K. W. Bentley, in: The Isoquinoline Alkaloids, Hardwood Ac-
ademic, Amsterdam, 1998; b) F. Dzierszinski, A. Coppin, M.
Mortuaire, E. Dewally, C. Slomianny, J.-C. Ameisen, F. DeBels,
S. Tomavo, Antimicrob. Agents Chemother. 2002, 46, 3197; c)
L. Kong, C. Cheng, R. Tan, Planta Med. 2001, 67, 74; d) R.
Davis, A. Carroll, G. Pierens, R. Quinn, J. Nat. Prod. 1999, 62,
419; e) E. Marco, W. Laine, C. Tardy, A. Lansiaux, M. Iwao,
F. Ishibashi, C. Bailly, F. Gago, J. Med. Chem. 2005, 48, 3796.
[2] For reviews, see: a) J. Montgomery, Angew. Chem. 2004, 116,
220
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 217–221