10.1002/ejic.201801221
European Journal of Inorganic Chemistry
FULL PAPER
[6] J. L. Speier, J. A. Webster, G. H. Barnes, J. Am. Chem. Soc., 1957,
79, 974–979.
[7] B. D. Karstedt, General Electric Company., U.S. Patent US3775452A,
two substrates was added with a syringe while stirring. The solution was
stirred for 4 h at room temperature and taken out of the glovebox and
opened in air. The reaction mixture was transferred to a separation funnel
using Et2O and quenched with a HCl solution (2.5 mL, 10%) to form the
alcohol product. The aqueous layer was removed, and the organic layer
was washed with H2O (0.2 mL). The aqueous layer was washed Et2O (3 x
2 mL). The Et2O fractions were filtered over a silica plug (~1 cm, total
volume after Et2O addition: 25 mL). For GC analysis, 1 mL of the prepared
solution was added to 2.5 mL of a mesitylene (Mes) solution (internal
standard, 0.017 M Mes solution: 102.4 mg Mes in 50 mL THF) and THF
was added to a total volume of 10 mL. For NMR analysis, the solvent and
precursors were evaporated in vacuum resulting in a turbid white liquid.
1973.
[8] X. Du, Z. Huang, ACS Catal., 2017, 7, 1227–1243.
[9] R. Langer, Y. Diskin-Posner, G. Leitnus, L. J. W. Shimon, Y. Ben-
David, D. Milstein, Angew. Chem. Int. Ed., 2011, 50(42), 9948–9952.
[10] A. M. Tondreau, C. C. H. Atienza, K. J. Weller, S. A. Nye, K. M. Lewis,
J. G. P. Delis, P. J. Chirik, Science, 2012, 335(6068), 567–570.
[11] X. Du, Y. Zhang, D. Peng, Z. Huang, Angew. Chem. Int. Ed., 2016,
55, 6671–6675.
[12] T. J. Steiman, C. J. Uyeda, J. Am. Chem. Soc., 2015, 5(4), 2081–
2084.
[13] I. Buslov, J. Becouse, S. Mazza, M. Montandon-Clerc, X. Hu, Angew.
Chem. Int. Ed., 2015, 54(48), 14523–14526.
[14] I. Buslov, S. C. Keller, X. Hu, Org. Lett., 2016, 18(8), 1928–1931.
[15] I. Pappas, S. Treacy, P. J. Chirik, ACS Catal., 2016, 55(40), 12295–
12299.
[16] A. J. Chalk, J. F. Harrod, J. Am. Chem. Soc., 1965, 87, 1133–1135.
[17] M. A. Schroeder, M. A. Wrighton, J. Organomet. Chem., 1977, 128(3),
345–358.
Isolation of octylphenylsilane: In a nitrogen-filled glovebox, 3pTol (21.0
mg, 0.03 mmol) was dissolved in THF (1 mL). 1-Octene (0.470 mL, 3.0
mmol) and PhSiH3 (0.405 mL, 3.3 mmol) were subsequently added, and
bubbling occurred upon addition of the latter. The clear brown solution was
stirred for 4 h and taken out of the glovebox. Air was bubbled through the
solution for 20 min to quench the catalyst, turning the solution green.
Cobalt was removed by filtration over a silica plug (~1 cm) with petroleum
ether. The product was isolated by column chromatography using
petroleum ether as the eluent. Evaporation of the solvents in vacuum
resulted in a turbid white liquid (319 mg, 1.45 mmol, 48%). 1H NMR (C6D6):
δ 7.52-7.43 (m, 3H, Ar–H), 7.18-7.01 (m, 2H, Ar–H), 4.48 (t, 3JHH = 3.7 Hz,
2JHSi = 190.99 Hz, 2H, Si–H2), 1.47-1.37 (m, 2H, –CH2), 1.33-1.13 (m, 10H,
[18] S. Sakaki, N. Mizoe, M. Sugimoto, Organometallics, 1998, 7333,
2510–2523.
[19] A. K. Roy, R. B. Taylor, J. Am. Chem. Soc., 2002, 124(32), 9510–
9524.
[20] M. Brookhart, B. E. Grant., J. Am. Chem. Soc., 1993, 115, 2151–
2156.
[21] Z. Mo, Y. Liu, L. Deng, Angew. Chem. Int. Ed., 2013, 52, 10845–
10849.
[22] C. Chen, M. B. Hecht, A. Kavara, W. W. Brennessel, B. Q. Mercado,
D. J. Weix, P. L. Holland, J. Am. Chem. Soc., 2015, 137, 13244–
13247.
3
–CH2), 0.94-0.87 (t, JHH = 6.9 Hz, 3H, –CH3), 0.87-0.79 (m, 2H, –CH2).
[23] C. H. Schuster, T. Diao, I. Pappas, P. J. Chirik, ACS Catal., 2016, 6,
13C NMR (C6D6): δ 135.6 (Ar–CH), 132.9 (Ar–CH), 129.9 (Ar–CH), 128.4
(Ar–CH), 33.3 (octyl), 32.3 (octyl), 29.6 (octyl), 25.5 (octyl), 23.1 (octyl),
14.4 (–CH3), 10.4 (SiH2–CH2). INEPT 29Si-NMR (C6D6): δ –31.0. GC-MS:
Octylphenylsilane: t: 15.9, m/z: [M-C6H6]+ obs. 142.2, calcd: 142.1. GC:
Octylphenylsilane t: 3.6.
2632–2636.
[24] A. D. Ibrahim, S. W. Entsminger, L. Zhu, A. R. Fout, ACS Catal., 2016,
6, 3589–3593.
[25] D. Noda, A. Tahara, Y. Sunada, H. Nagashima, J. Am. Chem. Soc.,
2016, 138, 2480–2483.
[26] A. Gorczynski, M. Zaranek, S. Witomska, A. Bocian, A. R.
Stefankiewicz, M. Kubicki, V. Patroniak, P. Pawluc, Catal. Commun.,
2016, 78, 71–74.
Silane activation: In a glovebox, 3pTol (21.0 mg, 0.03 mmol) was dissolved
in C6D6 (0.4 mL) and stirred. PhSiH3 (15.6 mg, 0.14 mmol) was added to
a second vial and diluted with C6D6 (1 mL). 0.6 mL of the PhSiH3 solution
(0.09 mmol) was added to the solution of 3pTol and the mixture was stirred
for 15 min, after which it was filtered into a Young-type NMR tube. 1H NMR
(C6D6): δ –11.98 (m, hydride), 31P NMR (C6D6): δP broad signals: 74, 70,
64, 60. Sharp signals: –16.1, –16.2, –16.4, –17.3, –17.6. Spectra are
shown in the supporting information, Figure S14 and S15.
[27] Y. Gao, L. Wang, L. Deng, ACS Catal., DOI:
10.1021/acscatal.8b02513.
[28] A. Sanagawa, H. Nagashima, Organometallics, 2018, 37, 2859−2871.
[29] J. Guo, X. Shen, Z. Lu, Angew. Chem. Int. Ed., 2017, 56, 615–618.
[30] L. Yong, K. Kirleis, H. Butenschon, Adv. Synth. Catal., 2006, 348,
833–836.
[31] Z. Mo, J. Xiao, Y. Gao, L. Deng, J. Am. Chem. Soc., 2014, 136,
17414–17417.
[32] C. Wu, W. J. Teo, S. Ge, ACS Catal., 2018, 8(7), 5896–5900.
[33] H. Wen, X. Wan, Z. Huang, Angew. Chem., 2018, 130, 6427–6431.
[34] M. A. Nesbit, D. J. M. Suess, J. C. Peters, Organometallics, 2015,
34(19) 4741–4752.
[35] Y. Li, J. A. Krause, H. Guan, Organometallics, 2018, 37, 2147−2158.
[36] a) T. Dombray, C. Helleu, C. Darcel, J. -B. Sortais, Adv. Synth. Catal.,
2013, 355, 3358–3362. b) D. Bézier, G. T. Venkanna, L. C. Misal
Castro, J. Zheng, T. Roisnel, J. -B. Sortais, C. Darcela, Adv. Synth.
Catal., 2012, 354, 1879–1884.
[37] Y. Liu, L. Deng, J. Am. Chem. Soc., 2017, 139(5), 1798–1801.
[38] a) C. Wang, W. J. Teo, S. Ge, ACS Catal., 2017, 7, 855–863. b) W. J.
Teo, C. Wang, Y. W. Tan, S. Ge, Angew. Chem. Int. Ed., 2017, 56,
4328–4332. c) C. Wang, W. J. Teo, S. Ge, Nat. Commun., 2017, 8,
DOI: 10.1038/s41467-017-02382-7. d) H. L. Sang, S. Yu, S. Ge,
Chem. Sci., 2018, 9, 973–978.
Acknowledgements
DV and MEM would like to thank the Sectorplan Natuur- en
Scheikunde (Tenure-track grant at Utrecht University) for financial
support. The X-ray diffractometer was financed by The
Netherlands Organization for Scientific Research (NWO). This
work was sponsored by NWO Exacte en Natuurwetenschappen
(Physical Sciences) for the use of supercomputer facilities, with
financial support from the Netherlands Organization for Scientific
Research (NWO).
[39] D. G. A. Verhoeven, M. A. C. van Wiggen, J. Kwakernaak, M. Lutz, R.
J. M. Klein Gebbink, M.-E. Moret, Chem. Eur. J., 2018, 24, 5163–
5172.
[40] D. G. A. Verhoeven, M. -E. Moret, Dalton Trans., 2016, 45, 15762–
15778.
[41] B. W. H. Saes, D. G. A. Verhoeven, M. Lutz, R. J. M. Klein Gebbink,
M. -E. Moret, Organometallics, 2015, 34, 2710–2713.
[42] Related reactivity: S. Sung, Q. Wang, T. Krämer, R. D. Young, Chem.
Sci., 2018, 9, 8234–8241.
Keywords: Silane chemistry • Cobalt • Hydrosilylation •
Homogeneous catalysis • Cooperative catalysis
[43] The 31P NMR shows a few very weak signals around –15 ppm, which
are attributed to ligand decomposition, and broad features around 45
and 60 ppm.
[1] J. Sun, L. Deng, ACS Catal., 2016, 6, 290–300.
[2] X. Du, Z. Huang, ACS Catal., 2017, 7, 1227–1243.
[3] J. V. Obligacion, P. J. Chirik, Nature Rev, 2018, 2, 15–34.
[4] K. Junge, V. Papa, M. Beller, Chem. Eur. J.,
DOI:10.1002/chem.201803016.
[44] a) S. P. Semproni, C. Milsmann, P. J. Chirik, J. Am. Chem. Soc.,
2014, 136, 9211–9224. b) M. L. Scheuermann, S. P. Semproni, I.
Pappas, P. J. Chirik, Inorg. Chem., 2014, 53, 9463–9465.
[5] R. J. Hofmann, M. Vlatkovic, Frank Wiesbrock, Polymers, 2017, 9(10),
534; DOI:10.3390/polym9100534.
This article is protected by copyright. All rights reserved.