Organic Letters
Letter
(3) (a) Graver, A.; Konig, B. Eur. J. Org. Chem. 2009, 30, 5099.
(b) Venkatraman, J.; Shankaramma, S. C.; Balaram, P. Chem. Rev. 2001,
101, 3131.
irradiation (1 h vs 20−24 h under thermal conditions) was
discovered to be critical in the ring closing metathesis of 3m to
form cyclic analog 9 efficiently (Scheme 5). Cyclic α-amino acid
(4) (a) Liu, Z.; Mehta, S. J.; Hruby, V. J. Organic Preparations and
Procedures International: The New Journal for Organic Synthesis 2012, 44,
222. (b) Cativiela, C.; Diaz-De-Villegas, M. D. Tetrahedron: Asymmetry
2007, 18, 569. (c) Vogt, H.; Brase, S. Org. Biomol. Chem. 2007, 5, 406.
(5) (a) Ooi, T.; Takeuchi, M.; Kameda, M.; Maruoka, K. J. Am. Chem.
Soc. 2000, 122, 5228. (b) Ooi, T.; Takeuchi, M.; Ohara, D.; Maruoka, K.
Synlett 2001, 7, 1185. (c) Berger, R.; Duff, K.; Leighton, J. L. J. Am.
Chem. Soc. 2004, 126, 5686. (d) Application of ref 5b utilizing an analog
of phenylglycine gave a 35% yield and 45% ee; see: Metro, T.-X.; Cochi,
A.; Pardo, D. G.; Cossy, J. J. Org. Chem. 2011, 76, 2594.
Scheme 5. Synthesis of Higher Ring Homologue of
α‑Substituted Proline
(6) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947.
(7) (a) Wieland, L. C.; Vieira, E. M.; Snapper, M. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2009, 131, 570. (b) Fu, P.; Snapper, M. L.; Hoveyda, A.
H. J. Am. Chem. Soc. 2008, 130, 5530. (c) Basra, S.; Fennie, M. W.;
Kozlowski, M. C. Org. Lett. 2006, 8, 2659. (d) Zhuang, W.; Saaby, S.;
Jorgensen, K. A. Angew. Chem., Int. Ed. 2004, 43, 4476.
derivatives are of great synthetic and pharmaceutical interest,22
but asymmetric methods for the synthesis of higher ring
homologues of α-substituted prolines23 have not received
much attention.24
(8) Riant, O.; Hannedouche, J. Org. Biomol. Chem. 2007, 5, 873−888.
(9) Maruoka, K. Org. Process Res. Dev. 2008, 12, 679.
(10) (a) Trost, B. M.; Ariza, X. Angew. Chem., Int. Ed. Engl. 1997, 36,
2635. (b) Chen, W.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2068.
(11) Fiaud, J. C.; Kagan, H. Tetrahedron Lett. 1970, 11, 1813.
(12) (a) Mizota, I.; Matsuda, Y.; Kamimura, S.; Tanaka, H.; Shimizu,
M. Org. Lett. 2013, 15, 4206. (b) Shimizu, M.; Kurita, D.; Mizota, I. Asian
J. Org. Chem. 2013, 2, 208. (c) Shimizu, M.; Takao, Y.; Katsurayama, H.;
Mizota, I. Asian J. Org. Chem. 2013, 2, 130. (d) Mizota, I.; Tanaka, K.;
Shimizu, M. Tetrahedron Lett. 2012, 53, 1847. (e) Niwa, Y.; Shimizu, M.
J. Am. Chem. Soc. 2003, 125, 3720. (f) Niwa, Y.; Takayama, K.; Shimizu,
M. Bull. Chem. Soc. Jpn. 2002, 75, 1819. (g) Shimizu, M.; Niwa, Y.
Tetrahedron Lett. 2001, 42, 2829.
In summary, we have disclosed the first asymmetric tandem N-
alkylation/π-allylation of α-iminoesters, which gives rise to
complex enantioenriched α-allyl-α-aryl α-amino acids in one step
from three commercially available components. This report
represents the first enantioselective synthesis of this class of
compounds beyond α-allyl-α-phenylglycine. The dramatic effect
of enolate aggregation observed herein provides a cautionary tale
for other systems. The nature of these effects are the subject of
further exploration.
(13) Dickstein, J. S.; Fennie, M. W.; Norman, A. L.; Paulose, B. J.;
Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 15794.
(14) (a) Dreher, S. D.; Dormer, P. G.; Sandrock, D. L.; Molander, G. A.
J. Am. Chem. Soc. 2008, 130, 9257. (b) Metz, A. E.; Berritt, S.; Dreher, S.
D.; Kozlowski, M. C. Org. Lett. 2012, 3, 760.
(15) For racemic entries to α-allyl compounds from α-iminoesters, see
ref 12d, e.
(16) See Supporting Information for further details.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and characterization. This material is
■
S
AUTHOR INFORMATION
Corresponding Author
■
(17) Dickstein, J. S.; Kozlowski, M. C. Chem. Soc. Rev. 2008, 37, 1166.
(18) Meyers, A. I.; Knaus, G.; Kamata, K.; Ford, M. E. J. Am. Chem. Soc.
1976, 98, 567.
Notes
(19) Magnesium enolates exist as monomers or as dimers bridged
through either the halide or the enolate oxygen. The coordination
sphere of the magnesium ranges from tetrahedral to octahedral with
solvent molecules occupying remaining coordination sites. For the X-ray
crystal structure of a dimeric bidentate enolate with Mg, see: (a) Di
Noto, V.; Bandoli, G.; Dolmella, A.; Zarli, B.; Vivani, M.; Vidali, M. J.
Chem. Cryst. 1995, 25, 375. For the X-ray crystal structure of dimeric
monodentate enolates with Mg, see: (b) Allan, J. F.; Clegg, W.;
Henderson, K. W.; Horsburgh, L.; Kennedy, A. R. J. Organomet. Chem.
1998, 559, 173. (c) Williard, P. G.; Salvino, J. M. J. Chem. Soc., Chem.
Commun. 1986, 153.
(20) (a) Arisawa, M.; Terada, Y.; Takahashi, K.; Nakagawa, M.;
Nishida, A. J. Org. Chem. 2006, 71, 4255. (b) Nelson, S. G.; Bungard, C.
J.; Wang, K. J. Am. Chem. Soc. 2003, 125, 13000.
(21) (a) Erdogan, G.; Grotjahn, D. B. J. Am. Chem. Soc. 2009, 131,
10354. (b) Larsen, C. R.; Grotjahn, D. B. J. Am. Chem. Soc. 2012, 134,
10357.
(22) Park, K. H.; Kurth, M. J. Tetrahedron 2002, 58, 8629.
(23) Seebach, D.; Boes, M.; Naef, R.; Schweizer, W. B. J. Am. Chem. Soc.
1983, 105, 5390.
(24) For reviews on the asymmetric synthesis of cyclic α,α-
disubstituted α-amino acids, see: (a) Cativiela, C.; Ordonez, M.
Tetrahedron: Asymmetry 2009, 20, 1. (b) Cativiela, C.; Diaz-De-Villegas,
M. D. Tetrahedron: Asymmetry 2000, 11, 645.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the NIH (GM-087605) and the NSF
(CHE0911713) for financial support of this research. The NSF
provided for funding of the High Throughput Laboratory
(GOALI CHE-0848460). Partial instrumentation support was
provided by the NIH for MS (1S10RR023444) and NMR
(1S10RR022442) and by the NSF for an X-ray diffractometer
(CHE 0840438). The invaluable assistance of Dr. D. B. Grotjahn
(San Diego State) for providing his catalyst and expertise on
alkene isomerization. Our collaboration with Dr. P. Carroll
(UPenn) in obtaining the crystal structure is gratefully
acknowledged. Also, the contributions of J. Hun (UPenn) and
the assistance from Dr. C. Stanciu (Merck) and Dr. S. D. Dreher
(Merck) with the PME experiments.
REFERENCES
■
(1) Xie, W.; Zou, B.; Pei, D.; Ma, D. Org. Lett. 2005, 7, 2775.
(2) (a) Savage, S. A.; Waltermire, R. E.; Campagna, S.; Bordawekar, S.;
Toma, J. D. R. Org. Process Res. Dev. 2009, 13, 510. (b) Washburn, W. N.;
et al. Bioorg. Med. Chem. Lett. 2004, 14, 3525. (c) Ma, D. W.; Tian, H. Q.;
Zou, G. X. J. Org. Chem. 1999, 64, 120. (d) Stilz, H. U.; Jablonka, B.;
Knolle, J.; Paulus, E. F.; Zoller, G. J. Med. Chem. 1996, 39, 2118.
1951
dx.doi.org/10.1021/ol500506t | Org. Lett. 2014, 16, 1948−1951