FULL PAPER
[2] a) R. N. Salvatore, C. H. Yoon, K. W. Jung, Tetrahedron 2001,
57, 7785–7811; b) R. N. Salvatore, A. S. Nagle, K. W. Jung, J.
Org. Chem. 2002, 67, 674–683; c) C. Chiappe, D. Pieraccini,
Green Chem. 2003, 5, 193–197.
[3] a) A. K. Szardenings, T. S. Burkoth, G. C. Look, D. A.
Campbell, J. Org. Chem. 1996, 61, 6720–6722; b) S. Bhattach-
aryya, Tetrahedron Lett. 1994, 35, 2401–2404.
(CH)2(CH)2CCH(CH3)2],
83.7
[m;
quaternary
C
of
(C6H5)4P2Fe(C5H4)2], 78.5 [t, J = 4.8 Hz; (C6H5)4P2Fe(C5H4)2],
74.7 [t, J = 2.3 Hz; (C6H5)4P2Fe(C5H4)2], 73.6 [t, J = 3.2 Hz;
(C6H5)4P2Fe(C5H4)2], 69.0 [t, J = 3.2 Hz; (C6H5)4P2Fe(C5H4)2],
31.0 [s; CH3C(CH)2(CH)2CCH(CH3)2], 20.6 [s; CH3C(CH)2-
(CH)2CCH(CH3)2], 14.6 [s; CH3C(CH)2(CH)2CCH(CH3)2) ppm.
MS (ES): m/z = 825.1 [M – BF4]+. C44H42BClF4FeP2Ru (911.94):
calcd. C 57.9, H 4.6; found C 56.8, H 4.6.
[4]
[5]
[6]
[7]
G. Cami-Kobeci, P. A. Slatford, M. K. Whittlesey, J. M. J. Wil-
liams, Bioorg. Med. Chem. Lett. 2005, 15, 535–537.
O. Saidi, A. J. Blacker, G. W. Lamb, S. P. Marsden, J. E. Taylor,
J. M. J. Williams, Org. Process Res. Dev. 2010, 14, 1046–1049.
R. Kawahara, K.-I. Fujita, R. Yamaguchi, J. Am. Chem. Soc.
2010, 132, 15108–15111.
a) Y. Watanabe, Y. Tsuji, H. Ige, Y. Ohsugi, T. Ohta, J. Org.
Chem. 1984, 49, 3359–3363; b) Y. Tsuji, K. T. Huh, Y. Ohsugi,
Y. Watanabe, J. Org. Chem. 1985, 50, 1365–1370; c) Y. Tsuji,
K. T. Huh, Y. Watanabe, Tetrahedron Lett. 1986, 27, 377–380;
d) Y. Tsuji, K. T. Huh, Y. Watanabe, J. Org. Chem. 1987, 52,
1673–1680; e) Y. Tsuji, S. Kotachi, K. T. Huh, Y. Watanabe, J.
Org. Chem. 1990, 55, 580–584; f) Y. Watanabe, Y. Morisaki, T.
Kondo, T.-A. Mitsudo, J. Org. Chem. 1996, 61, 4214–4218.
A. Del Zotto, W. Baratta, M. Sandri, G. Verardo, P. Rigo, Eur.
J. Inorg. Chem. 2004, 524–529.
Typical N-Alkylation Procedure: Phenethyl alcohol (0.36 mL,
3 mmol) and toluene (10 mL) were added to a mixture of the corre-
sponding ruthenium species (5 mol-% Ru) and dppf (5 mol-%, un-
less otherwise indicated) in a 25 mL round-bottomed flask with a
suba-seal at the side-neck. The mixture was stirred at reflux for
10 min. After this time, tert-butylamine (0.32 mL, 3 mmol) was
added and the first sample of 20 μL was taken with a micro syringe
through the suba-seal, dissolved in 2 mL of acetonitrile and kept
in the freezer. Samples were taken at 0, 20, 40, 60, 90, 120, 180,
300, 540 and 1440 min, thus maintaining the reflux for 24 h. All
of the samples were analysed by Gas Chromatography; injection
volume: 1 μL. The oven temperature ramped from 60 °C (hold for
3 min) to 280 °C (hold for 3 min) at 20 °C/min. Inlet pressure:
4.3 psi. The retention time for phenethyl alcohol was approximately
7.0 min, and the retention time for N-phenethyl-tert-butylamine
was 8.8 min. The conversion percentages were calculated from the
areas of both the starting substrate (phenethyl alcohol) and product
peaks with the formula: [(area product)/(area product + area sub-
strate)]ϫ100.
[8]
[9]
a) M. H. S. A. Hamid, J. M. J. Williams, Chem. Commun. 2007,
725–727; b) M. H. S. A. Hamid, J. M. J. Williams, Tetrahedron
Lett. 2007, 48, 8263–8265.
[10]
M. H. S. A. Hamid, C. L. Allen, G. W. Lamb, A. C. Maxwell,
H. C. Maytum, A. J. A. Watson, J. M. J. Williams, J. Am.
Chem. Soc. 2009, 131, 1766–1774.
[11] R. Stodt, S. Gencaslan, I. M. Müller, W. S. Sheldrick, Eur. J.
Inorg. Chem. 2003, 1873–1882.
Crystallographic Analysis: Suitable single crystals were selected un-
der the microscope and immersed in inert oil. The crystals were
mounted on a glass capillary and attached to a goniometer head
on a Bruker X8 Apex diffractometer using graphite-monochro-
mated Mo-Kα radiation (λ = 0.71073 Å) and 1.0° Φ-rotation
frames. The crystals were cooled to 150 K by an Oxford cryostream
low temperature device.[22] The full data sets were recorded and the
images processed using the Apex2 software, Bruker Nonius 2004.
Structure solution by direct methods was achieved through the use
of the SHELXS-97 program,[23] and the structural model refined
by full-matrix least-squares on F2 using SHELXL-97.[23] The non-
hydrogen atoms were refined with anisotropic thermal parameters.
Hydrogen atoms were placed using idealised geometric positions
(with free rotation for methyl groups), allowed to move in a “riding
model” along with the atoms to which they were attached, and
refined isotropically. Crystal data and structural refinement for the
six structures reported are collated in Table 6.
[12]
M. A. Bennett, A. K. Smith, J. Chem. Soc., Dalton Trans. 1974,
233–241.
[13] K. Mashima, K.-H. Kusano, T. Ohta, R. Noyori, H. Takaya,
J. Chem. Soc., Chem. Commun. 1989, 1208–1210.
[14] R. Aronson, M. R. J. Elsegood, J. W. Steed, D. A. Tocher, Poly-
hedron 1991, 10, 1727–1732.
[15] I. Özdemir, B. Çetinkaya, T. Seçkin, S. Köytepe, J. Mol. Catal.
A 2002, 179, 263–270.
[16] a) D. Carmona, M. P. Lamata, F. Viguri, J. Ferrer, N. García,
F. J. Lahoz, M. L. Martín, L. A. Oro, Eur. J. Inorg. Chem. 2006,
3155–3166; b) T.-T. Thai, B. Therrien, G. Süss-Fink, J. Or-
ganomet. Chem. 2009, 694, 3973–3981; c) R. Mitra, S. Das, S.
Shinde, S. Sinha, K. Somasundaram, A. G. Samuelson, Chem.
Eur. J. 2012, 18, 12278–12291.
[17] a) K. Fagnou, M. Lautens, Angew. Chem. Int. Ed. 2002, 41,
26–47; Angew. Chem. 2002, 114, 26; b) P. M. Maitlis, A.
Haynes, B. R. James, M. Catellani, G. P. Chiusoli, Dalton
Trans. 2004, 3409–3419.
[18] A. J. Blacker, M. J. Stirling, M. I. Page, Org. Process Res. Dev.
2007, 11, 642–648.
[19] G. Csjernyik, K. Bogár, J.-E. Bäckvall, Tetrahedron Lett. 2004,
CCDC-950726 (for 3a), CCDC-950727 (for 3d), CCDC-950728 (for
3e), CCDC-950729 (for 3g), CCDC-950730 (for 3i) and CCDC-
950731 (for 4c) contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
45, 6799–6802.
[20] a) S. B. Jensen, S. J. Rodger, M. D. Spicer, J. Organomet. Chem.
1998, 556, 151–158; b) J.-F. Mai, Y. Yamamoto, J. Organomet.
Chem. 1998, 560, 223–232; c) T. Sixt, J. Fiedler, W. Kaim, Inorg.
Chem. Commun. 2000, 3, 80–82; d) T. Sixt, M. Sieger, M. J.
Krafft, D. Bubrin, J. Fiedler, W. Kaim, Organometallics 2010,
29, 5511–5516; e) L. A. Paim, F. M. Dias, H. G. L. Siebald, J.
Ellena, J. D. Ardisson, M. M. da Silva, A. A. Batista, Polyhe-
dron 2012, 42, 110–117.
Acknowledgments
The authors wish to acknowledge the The Technology Strategy
Board, Swindon, UK for funding.
[21] F. Estevan, P. Lahuerta, J. Latorre, A. Sánchez, C. Sieiro, Poly-
hedron 1987, 6, 473–478.
[22] J. Cosier, A. M. Glazer, J. Appl. Crystallogr. 1986, 19, 105–107.
[23] G. M. Sheldrick, SHELXL97, Program for the Refinement of
Crystal Structures, University of Göttingen, Germany, 1997.
Received: January 28, 2014
[1] a) M. H. S. A. Hamid, P. A. Slatford, J. M. J. Williams, Adv.
Synth. Catal. 2007, 349, 1555–1575; b) G. Guillena, D. J.
Ramón, M. Yus, Angew. Chem. Int. Ed. 2007, 46, 2358–2364;
Angew. Chem. 2007, 119, 2410.
Published Online: March 12, 2014
Eur. J. Inorg. Chem. 2014, 1974–1983
1983
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim