Paper
RSC Advances
D. Li, N. Li, M. Chen, Y. Xu and S. Si, ACS Med. Chem. Lett.,
2014, 5, 884–888.
5 For reviews on the synthesis of quinazolinones: (a)
D. A. Patil, P. O. Patil, G. B. Patil and S. J. Surana, Mini-Rev.
Med. Chem., 2011, 11, 633–641; (b) T. M. M. Maidena and
J. P. A. Harrity, Org. Biomol. Chem., 2016, 14, 8014–8025; (c)
L. He, H. Li, J. Chen and X.-F. Wu, RSC Adv., 2014, 4,
12065–12077For representative examples on the synthesis
of polycyclic quinazolinones: (d) C. Zhang, C. De, K. R. Mal
and D. Seidel, J. Am. Chem. Soc., 2008, 130, 416–417; (e)
A. Servais, M. Azzouz, D. Lopes, C. Courillon and
M. Malacria, Angew. Chem., Int. Ed., 2007, 46, 576–579; (f)
K. S. Kumar, P. M. Kumar, M. A. Reddy, M. Ferozuddin,
M. Sreenivasulu, A. A. Jafar, G. R. Krishna, C. M. Reddy,
D. Rambabu, K. S. Kumar, S. Pale and M. Pal, Chem.
Commun., 2011, 47, 10263–10265; (g) A. Clemenceau,
Q. Wang and J. Zhu, Org. Lett., 2017, 19, 4872–4875; (h)
H. S. Kwon, H.-A. Seo and C.-H. Cheon, Org. Lett., 2016, 18,
5280–5283; (i) X.-F. Kong, F. Zhan, G.-X. He, C.-X. Pan,
C.-X. Gu, K. Lu, D.-L. Mo and G.-F. Su, J. Org. Chem., 2018,
83, 2006–2017; (j) Q.-Y. Li, S.-Y. Cheng, H.-T. Tang and
Y.-M. Pan, Green Chem., 2019, 21, 5517–5520.
6 Y. Feng, N. Tian, Y. Li, C. Jia, X. Li, L. Wang and X. Cui, Org.
Lett., 2017, 19, 1658–1661.
7 S. Das, H. M. Begam and R. Jana, Org. Lett., 2018, 20, 7107–
7112.
8 (a) M. Lou, Z. Deng, X. Mao, Y. Fu, Q. Yang and Y. Peng, Org.
Biomol. Chem., 2018, 16, 1851–1859; (b) J. Zhang, X. Wang,
D. Chen, Y. Kang, Y. Ma and M. Szostak, J. Org. Chem.,
2020, 85, 3192–3201.
9 (a) C. Lu, S. Su, D. Jing, Y. Jin, J. Xie, R. Li and K. Zheng, Org.
Lett., 2019, 21, 1438–1443; (b) D. Jing, C. Lu, Z. Chen, S. Jin,
L. Xie, Z. Meng, Z. Su and K. Zheng, Angew. Chem., Int. Ed.,
2019, 58, 14666–14672.
Scheme 5 Proposed reaction pathway.
intermediate 4 produced via the oxidation of 2a by iodine with
the elimination of HI or direct anodic oxidation. The conden-
sation of 1a and 4 led to intermediate 6. Finally, the oxidation of
compound 6 under the function of iodine19 or anode offered the
desired products 3a. Alternatively, the desired product could
also be generated through another pathway. At rst, the reac-
tions between 1a and 2a yielded intermediate 5, which could be
transformed to cation radical intermediate 50 and 7 through
successive anodic oxidation processes. The following intermo-
lecular nucleophilic cyclization afforded 6. Then 3a was
produced through the oxidation of 6 as same as path A.
Conclusions
In summary, we have developed a straightforward electro-
chemical approach to construct polycyclic quinazolinones
from readily available isatoic anhydrides and cyclic amines in
one step. A broad scope of fused quinazolinones were prepared
in moderate to good yield in the absence of transition-metal
catalyst and external oxidant. This method also provided effi-
cient route to rutaecarpine.
10 L. Xie, C. Lu, D. Jing, X. Ou and K. Zheng, Eur. J. Org. Chem.,
2019, 2019, 3649–3653.
11 F. Xie, H. Chen, R. Xie, F. Jiang and M. Zhang, ACS Catal.,
2018, 8, 5869–5874.
12 J. Li, Z.-B. Wang, Y. Xu, X.-C. Lu, S.-R. Zhu and L. Liu, Chem.
Commun., 2019, 55, 12072–12075.
Conflicts of interest
13 X. Chen, F. Xia, Y. Zhao, J. Ma, Y. Ma, D. Zhang, L. Yang and
P. Sun, Chin. J. Chem., 2020, 38, 1239–1244.
14 F.-C. Jia, T.-Z. Chen and X.-Q. Hu, Org. Chem. Front., 2020, 7,
1635–1639.
There are no conicts to declare.
15 (a) S. R. Waldvogel, S. Lips, M. Selt, B. Riehl and C. J. Kampf,
Chem. Rev., 2018, 118, 6706–6765; (b) Y. Jiang, K. Xu and
C. Zeng, Chem. Rev., 2018, 118, 4485–4540; (c) K. Liu,
C. Song and A. Lei, Org. Biomol. Chem., 2018, 16, 2375–
2387; (d) M. Yan, Y. Kawamata and P. S. Baran, Chem. Rev.,
2017, 117, 13230–13319; (e) K. D. Moeller, Chem. Rev.,
2018, 118, 4817–4833; (f) J. B. Sperry and D. L. Wright,
Chem. Soc. Rev., 2006, 35, 605–621; (g) S. Lv, X. Han,
J. -Y. Wang, M. Zhou, Y. Wu, L. Ma, L. Niu, W. Gao,
J. Zhou, W. Hu, Y. Cui and J. Chen, Angew. Chem., Int. Ed.,
2020, 59, 11583–11590; (h) J. Chen, S. Lv and S. Tian,
ChemSusChem, 2019, 12, 115–132; (i) S. Lv, G. Zhang,
J. Chen and W. Gao, Adv. Synth. Catal., 2020, 362, 462–477;
Notes and references
1 (a) S. B. Mhaske and N. P. Argade, Tetrahedron, 2006, 62,
9787–9826; (b) J. P. Michael, Nat. Prod. Rep., 2008, 25, 166–
187.
2 Y.-C. Chen, X.-Y. Zeng, Y. He, H. Liu, B. Wang, H. Zhou,
J.-W. Chen, P.-Q. Liu, L.-Q. Gu, J.-M. Ye and Z. S. Huang,
ACS Chem. Biol., 2013, 8, 2301–2311.
3 G. Huang, A. Drakopoulos, M. Saedtler, H. Zou, L. Meinel,
J. Heilmann and M. Decker, Bioorg. Med. Chem. Lett., 2017,
27, 4937–4941.
4 (a) K.-M. Tian, J.-J. Li and S.-W. Xu, Pharmacol. Res., 2019,
141, 541–550; (b) Y. Li, T. Feng, P. Liu, C. Liu, X. Wang,
This journal is © The Royal Society of Chemistry 2020
RSC Adv., 2020, 10, 44382–44386 | 44385