Organic Letters
Letter
Poulsen, P. H.; Jørgensen, K. A. J. Am. Chem. Soc. 2013, 135, 8063−
8070. (c) Huang, J.; Zhao, L.; Liu, Y.; Cao, W.; Wu, X. Org. Lett. 2013,
15, 4338−4341. (d) Paradisi, E.; Righi, P.; Mazzanti, A.; Ranieri, S.;
Bencivenni, G. Chem. Commun. 2012, 48, 11178−11180.
(7) (a) Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.
J. Am. Chem. Soc. 2003, 125, 3192−3193. (b) Zhou, Z.; Fahrni, C. J. J.
Am. Chem. Soc. 2004, 126, 8862−8863. (c) Friscourt, F.; Fahrni, C. J.;
Boons, G.-J. J. Am. Chem. Soc. 2012, 134, 18809−18815.
(8) For an excellent review of the diverse chemistry of organoazides,
see: (a) Myers, E. L.; Raines, R. T. Angew. Chem., Int. Ed. 2009, 48,
gem-diazide (5). The interesting feature of this strategy is that
one of the azide functionalities is being activated by another azide
group in the presence of a Lewis acid to form the α-
azidocarbenium ion species (IV), which is then trapped by
organosilane to afford the azide 3, 6, or 8.
In summary, we have developed an unprecedented approach
for the trapping of sensitive α-azidocarbenium ions with various
nucleophiles. This provided a convenient, one-pot, catalytic
method for the chemoselective synthesis of primary and
secondary benzyl azides directly from aldehydes. The aldehydes
are first converted to diazide which in situ dissociates to provide
the α-azidocarbenium ion that is being trapped by various
nucleophiles. Interestingly, the favorable Schmidt rearrangement
of such intermediates has been overcome. Further investigations
toward the scope and limitations of this methodology for the
synthesis of various azides are in progress.
2359−2363. (b) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew.
̈
Chem., Int. Ed. 2005, 44, 5188−5240. For recent articles, see:
(c) Kulkarni, S. S.; Hu, X.; Manetsch, R. Chem. Commun. 2013, 49,
1193−1195. (d) Wang, Y.-F.; Chiba, S. J. Am. Chem. Soc. 2009, 131,
12570−12572. (e) Hui, B. W.-Q.; Chiba, S. Org. Lett. 2009, 11, 729−
732. (f) Mahoney, J. M.; Smith, C. R.; Johnston, J. N. J. Am. Chem. Soc.
2005, 127, 1354−1355.
́
(9) (a) Girard, S.; Robins, R. J.; Villieras, J.; Lebreton, J. Tetrahedron
Lett. 2000, 41, 9245−9249. (b) Spangenberg, T.; Breit, B.; Mann, A. Org.
Lett. 2009, 11, 261−264. (c) Coia, N.; Mokhtari, N.; Vasse, J.-L.;
Szymoniak, J. Org. Lett. 2011, 13, 6292−6295.
ASSOCIATED CONTENT
* Supporting Information
■
S
́
(10) (a) Jego, J. M.; Carboni, B.; Vaultier, M.; Carrie, R. Chem.
Commun. 1989, 142−143. (b) Jego, J. M.; Carboni, B.; Vaultier, M. Bull.
Soc. Chim. Fr. 1992, 129, 554−565.
(11) For azidation of benzyl alcohol (via SN1 pathway), see:
(a) Sampath Kumar, H. M.; Subba Reddy, B. V.; Anjaneyulu, S.;
Yadav, J. S. Tetrahedron Lett. 1998, 39, 7385−7388. (b) Chan, L. Y.;
Kim, S.; Chung, W. T.; Long, C.; Kim, S. Synlett 2011, 415−419.
(c) Sawama, Y.; Nagata, S.; Yabe, Y.; Morita, K.; Monguchi, Y.; Sajiki, H.
Chem.Eur. J. 2012, 18, 16608−16611. (d) Pramanik, S.; Ghorai, P.
RSC Adv. 2013, 3, 23157−23165.
Experimental procedures, characterization data, and copies of
NMR spectra for all products. This material is available free of
AUTHOR INFORMATION
Corresponding Author
■
Notes
(12) For azidation of alcohols (via SN2 pathway), see: (a) Thompson,
A. S.; Humphrey, G. R.; DeMarco, A. M.; Mathre, D. J.; Grabowski, E. J.
J. J. Org. Chem. 1993, 58, 5886−5888. (b) Mizuno, M.; Shioiri, T. Chem.
Commun. 1997, 2165−2166. (c) Iranpoor, N.; Firouzabadi, H.;
Akhlaghinia, B.; Nowrouzi, N. Tetrahedron Lett. 2004, 45, 3291−
3294. (d) Rad, M. N. S.; Behrouzb, S.; Khalafi-Nezhad, A. Tetrahedron
Lett. 2007, 48, 3445−3449. (e) Kuroda, K.; Hayashia, Y.; Mukaiyama, T.
Tetrahedron 2007, 63, 6358−6364.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work has been supported by BRNS, DAE, India, through a
DAE Young Scientist Research Award Grant. We are grateful to
IISER Bhopal for additional support. We are thankful to Dr.
Deepak Chopra for his assistance. S.P. thanks CSIR, New Delhi,
India, for a fellowship.
(13) For reductive azidation, see: Barluenga, J.; Tomas
́
-Gamasa, M.;
Valdes, C. Angew. Chem., Int. Ed. 2012, 51, 5950−5952.
́
(14) (a) Evans, D. A.; Britton, T. C. J. Am. Chem. Soc. 1987, 109, 6881−
6883. (b) Benati, L.; Calestani, G.; Nanni, D.; Spagnolo, P. J. Org. Chem.
1998, 63, 4679−4684. (c) Vita, M. V.; Waser, J. Org. Lett. 2013, 15,
3246−3249.
REFERENCES
■
(1) (a) Schmidt, K. F. Z. Angew. Chem. 1923, 36, 511−524.
(b) Schmidt, K. F. Chem. Ber. 1924, 57, 704−706. (c) Smith, P. A. S.;
Horwitz, J. P. J. Am. Chem. Soc. 1950, 72, 3718−3722. For recent
examples, see: (d) Rokade, B. V.; Prabhu, K. R. J. Org. Chem. 2012, 77,
5364−5370.
(2) Stabilization of the carbocation by an α-azido group: (a) Bach, R.
D.; Wolber, G. J. J. Org. Chem. 1982, 47, 239−245. (b) Amyes, T. L.;
Richard, J. P. J. Am. Chem. Soc. 1991, 113, 1867−1869. (c) Richard, J. P.;
Amyes, T. L.; Jagannadham, V.; Lee, Y.-G.; Rice, D. J. J. Am. Chem. Soc.
1995, 117, 5198−5205. (d) Richard, J. P.; Amyes, T. L.; Toteva, M. M.
Acc. Chem. Res. 2001, 34, 981−988.
(3) Hoz, S.; Wolk, J. L. Tetrahedron Lett. 1990, 31, 4085−4088.
(4) Oxocarbenium ion: (a) Woods, R. J.; Andrews, C. W.; Bowen, J. P.
J. Am. Chem. Soc. 1992, 114, 859−864. (b) Larsen, C. H.; Ridgway, B.
H.; Shaw, J. T.; Woerpel, K. A. J. Am. Chem. Soc. 1999, 121, 12208−
12209. (c) Albury, A. M. M.; Jennings, M. P. J. Org. Chem. 2012, 77,
6929−6936. (d) Tran, V. T.; Woerpel, K. A. J. Org. Chem. 2013, 78,
6609−6621.
(15) (a) Waser, J.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2005,
127, 8294−8295. (b) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J.
Am. Chem. Soc. 2006, 128, 11693−11712. (c) Kapat, A.; Koning, A.;
̈
Montermini, F.; Renaud, P. J. Am. Chem. Soc. 2011, 133, 13890−13893.
(16) For early examples of diazide chemistry, see: (a) Sommers, A. H.;
Barnes, J. D. J. Am. Chem. Soc. 1957, 79, 3491−3492. (b) Barash, L.;
Wasserman, E.; Yager, W. A. J. Am. Chem. Soc. 1967, 89, 3931−3932.
(c) Moriarty, R. M.; Serridge, P. J. Am. Chem. Soc. 1971, 93, 1534−1535.
(d) Nishiyama, K.; Watanabe, A. Chem. Lett. 1984, 455−458.
(5) Peroxycarbenium ion: (a) Dussault, P. H.; Lee, I. Q. J. Am. Chem.
Soc. 1993, 115, 6458−6459. (b) Dussault, P. H.; Liu, X. Org. Lett. 1999,
1, 1391−1393. (c) Dussault, P. H.; Lee, I. Q.; Lee, H.-J.; Lee, R. J.; Niu,
Q. J.; Schultz, J. A.; Zope, U. R. J. Org. Chem. 2000, 65, 8407−8414.
(d) Ramirez, A.; Woerpel, K. A. Org. Lett. 2005, 7, 4617−4620. (e) Dai,
P.; Trullinger, T. K.; Liu, X.; Dussault, P. H. J. Org. Chem. 2006, 71,
2283−2292.
(6) Iminium ion: (a) Erkkila, A.; Majander, I.; Pihko, P. M. Chem. Rev.
̈
2007, 107, 5416−5470. (b) Dell’Amico, L.; Albrecht, Ł.; Naicker, T.;
2107
dx.doi.org/10.1021/ol5008235 | Org. Lett. 2014, 16, 2104−2107