Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
9
(b) Alexeeva, M.; Enright, A.; Dawson, M. J.; Mahmoudian, M.;
tertiary amines with tetrahydroisoquinoline core under pure chemꢀ
ical condition. This methodology provides a concise access to
chiral tetrahydroisoquinolines in 98% ee directly from the racemic
substrates with 100% theoretical yield, which is valuable for
preparation of some important drugs, including (+)ꢀsolifenacin,
(+)ꢀFR115427 and AMPA receptor antagonist. Further studies to
expand the scope to other amines or alcohols are ongoing in our
laboratory.
Turner, N. J. Angew. Chem. Int. Ed. 2002, 41, 3177. (c) Roff, G.
J.; Lloyd, R. C.; Turner, N. J. J. Am. Chem. Soc. 2004, 126, 4098.
(d) Dunsmore, C. J.; Carr, R.; Fleming, T.; Turner, N. J. J. Am.
Chem. Soc. 2006, 128, 2224. (e) Bailey, K. R.; Ellis, A. J.; Reiss,
R.; Snape, T. J.; Turner, N. J. Chem. Commun. 2007, 3640. (f)
Koszelewski, D.; Pressnitz, D.; Clay, D.; Kroutil, W. Org. Lett.
2009, 11, 4810. (g) Foulkes, J. M.; Malone, K. J.; Coker, V. S.;
Turner, N. J.; Lloyd, J. R. ACS Catal. 2011, 1, 1589. (h) Chen,
Y.; Goldberg, S. L.; Hanson, R. L. Parker, W. L.; Gill, I.; Tully,
T. P.; Montana, M. A.; Goswami, A.; Patel, R. N. Org. Process
Res. Dev. 2011, 15, 241. (i) Seo, Y.ꢀM.; Mathew, S.; Bea, H.ꢀS.;
Khang, Y.ꢀH.; Lee, S.ꢀH.; Kim, B.ꢀG.; Yun, H. Org. Biomol.
Chem. 2012, 10, 2482. (j) Ghislieri, D.; Green, A. P.; Pontini, M.;
Willies, S. C.; Rowles, I.; Frank, A.; Grogan, G.; Turner, N. J. J.
Am. Chem. Soc. 2013, 135, 10863. (k) Köhler, V.; Wilson, Y. M.;
Dürrenberger, M.; Ghislieri, D.; Churakova, E.; Quinto, T.;
Knörr, L.; Häussinger, D.; Hollmann, F.; Turner, N. J.; Ward, T.
R. Nature Chem. 2013, 5, 93. (l) Schrittwieser, J. H.; Groenenꢀ
daal, B.; Resch, V.; Ghislieri, D.; Wallner, S.; Fischereder, E.ꢀM;
Fuchs, E.; Grischek, B.; Sattler, J. H.; Macheroux, P.; Turner, N.
J.; Kroutil, W. Angew. Chem. Int. Ed. 2014, 53, 3731. (n) Yaꢀ
sukawa, K.; Nakano, S.; Asano, Y. Angew. Chem. Int. Ed. 2014,
53, 4428.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Procedures and spectral (NMR, HRMS, HPLC) data. This materiꢀ
AUTHOR INFORMATION
Corresponding Author
shileichem@dicp.ac.cn; ygzhou@dicp.ac.cn
ACKNOWLEDGMENT
Financial support from the National Natural Science Foundation
of China (21472188, 21125208) and Youth Innovation Promotion
Association, Chinese Academy of Sciences (2014167).
(7) (a) Adair, G. R. A.; Williams, J. M. J. Chem. Commun. 2005,
5578. (b) Adair, G. R. A.; Williams, J. M. J. Chem. Commun.
2007, 2608. (c) Shimada, Y.; Miyake, Y.; Matsuzawa, H.;
Nishibayashi, Y. Chem. Asian J. 2007, 2, 393.
(8) Lackner, A. D.; Samant, A. V.; Toste, F. D. J. Am. Chem. Soc.
2013, 135, 14090.
(9) (a) Xiao, D.; Zhang, X. Angew. Chem. Int. Ed. 2001, 40, 3425.
(b) Wang, D.ꢀW.; Wang, X.ꢀB.; Wang, D.ꢀS.; Lu, S.ꢀM.; Yu, C.ꢀ
B.; Zhou, Y.ꢀG. J. Org. Chem. 2009, 74, 2780.
(10) (a) Bolchi, C.; Pallavicini, M.; Fumagalli, L.; Straniero, V.;
Valoti, E. Org. Process Res. Dev. 2013, 17, 432. (b) Scully, F.ꢀE.
Jr.; Schlager, J.ꢀJ. Heterocycles 1982, 19, 653. (c) Zhu, R.; Xu,
Z.; Ding, W.; Liu, S.; Shi, X.; Lu, X. Chin. J. Chem. 2014, 32,
1039.
REFERENCES
(1) (a) Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249. (b)
Crosby, J. Tetrahedron 1991, 47, 4789. (c) Collet, A. Angew.
Chem. Int .Ed. 1998, 37, 3239. (d) Keith, J. M.; Larrow, J. F.;
Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5. (e) Vedejs, E.;
Jure, M. Angew. Chem. Int. Ed. 2005, 44, 3974.
(2) For selected reviews on DKR, see: (a) Huerta, F. F.; Minidis, A.
B. E.; Bäckvall, J.ꢀE. Chem. Soc. Rev. 2001, 30, 321. (b) May,
O.; Verseck, S.; Bommarius, A.; Drauz, K. Org. Process Res.
Dev. 2002, 6, 452. (c) Pàmies, O.; Bäckvall, J.ꢀE. Chem. Rev.
2003, 103, 3247. (d) Kamal, A.; Azhar, M. A.; Krishnaji, T.;
Malik, M. S.; Azeeza, S. Coordin. Chem. Rev. 2008, 252, 569. (e)
Lee, J. H.; Han, K.; Kim, M.ꢀJ.; Park, J. Eur. J. Org. Chem. 2010,
999. (f) Turner, N. J. Curr. Opin. Chem. Biol. 2010, 14, 115. (g)
Pellissier, H. Adv. Synth. Catal. 2011, 353, 659. (h) Verho, O.;
Bäckvall, J.ꢀE. J. Am. Chem. Soc. 2015, 137, 3996.
(3) For reviews on DYKAT, see: (a) Trost, B. M. J. Org. Chem.
2004, 69, 5813. (b) Trost, B. M.; Machacek, M. R.; Aponick, A.
Acc. Chem. Res. 2006, 39, 747. (c) Steinreiber, J.; Faber, K.;
Griengl, H. Chem. Eur. J. 2008, 14, 8060.
(4) For reviews on deracemization, see: (a) Faber, K. Chem. Eur. J.
2001, 7, 5004. (b) Gruber, C. C.; Lavandera, I.; Faber, K.;
Kroutil, W. Adv. Synth. Catal. 2006, 348, 1789. (c) Rachwalski,
M.; Vermue, N.; Rutjes, F. P. J. T. Chem. Soc. Rev. 2013, 42,
9268. (d) Simon, R. C.; Richter, N.; Busto, E.; Kroutil, W. ACS
Catal. 2014, 4, 129. The concept of deracemization we used here
is the definition in strict sense.
(5) For selected examples of biocatalyzed deracemization of alcoꢀ
hols, see: (a) Allan, G. R.; Carnell, A. J. J. Org. Chem. 2001, 66,
6495. (b) Kato, D.; Mitsuda, S.; Ohta, H. Org. Lett. 2002, 4, 371.
(c) Kato, D.; Mitsuda, S.; Ohta, H. J. Org. Chem. 2003, 68, 7234.
(d) Voss, C. V.; Gruber, C. C.; Faber, K.; Knaus, T.; Macheroux,
P.; Kroutil, W. J. Am. Chem. Soc. 2008, 130, 13969. (e) Voss, C.
V.; Gruber, C. C.; Kroutil, W. Angew. Chem. Int. Ed. 2008, 47,
741. (f) Ou, L.; Xu, Y.; Ludwig, D.; Pan, J.; Xu, J. H. Org. Pro-
cess Res. Dev. 2008, 12, 192. (g) Xue, Y.ꢀP.; Zheng, Y.ꢀG.;
Zhang, Y.ꢀQ.; Sun, J.ꢀL.; Liu, Z.ꢀQ.; Shen, Y.ꢀC. Chem. Com-
mun. 2013, 49, 10706. (h) Saravanan, T.; Jana, S.; Chadha, A.
Org. Biomol. Chem. 2014, 12, 4682.
(11) (a) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669. (b)
Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev. 2004, 104,
3341.
(12) (a) Chang, M.; Li, W.; Zhang, X. Angew. Chem. Int. Ed. 2011,
50, 10679. (b) Wu, Z.; Perez, M.; Scalone, M.; Ayad, T.; Raꢀ
tovelomananaꢀVidal, V. Angew. Chem. Int. Ed. 2013, 52, 4925.
(c) Berhal, F.; Wu, Z.; Zhang, Z.; Ayad,T.; Ratovelomananaꢀ
Vidal, V. Org. Lett. 2012, 14, 3308. (d) Ružič, M.; Pečavar, A.;
Prudič, D.; Kralj, D.; Scriban, C.; ZanottiꢀGerosa, A. Org. Pro-
cess Res. Dev. 2012, 16, 1293. (e) Tang, W.; Zhang, X. Chem.
Rev. 2003, 103, 3029. (f) Xie, J.; Zhou, Q. Acta Chim. Sinica
2012, 70, 1427. (g) Xie, J.; Zhou, Q. Acta Chim. Sinica 2014, 72,
778.
(13) Buckley, B. R.; Christie, S. D. R.; Elsegood, M. R. J.; Gillings,
C. M.; Page, P. C. B.; Pardoe, W. J. M. Synlett 2010, 6, 939.
(14) (a) Naito, R.; Yonetoku, Y.; Okamoto, Y.; Toyoshimata, A.;
Ikeda, K.; Takeuchi, M. J. J. Med. Chem. 2005, 48, 6597. (b) Ye,
Z.ꢀS.; Guo, R.ꢀN.; Cai, X.ꢀF.; Chen, M.ꢀW.; Shi, L.; Zhou, Y.ꢀG.
Angew. Chem. Int. Ed. 2013, 52, 3685. (c) Trinadhachari, G. N.;
Kamat, A. G.; Balaji, B. V.; Prabahar, K. J.; Naidu, K. M.; Babu,
K. R.; Sanasi, P. D. Org. Process Res. Dev. 2014, 18, 934.
(15) (a) Ohkubo, M.; Kuno, A.; Kastuta, K.; Ueda, Y.; Shirakawa, K.
Nakanishi, H.; Nakanishi, I.; Kinoshita, T.; Takasugi, H. Chem.
Pharm. Bull. 1996, 44, 95. (b) Li, X.; Coldham, I. J. Am. Chem.
Soc. 2014, 136, 5551. (c) Ludwig, M.; Hoesl, C. E.; Höfner, G.;
Wanner, K. T. Eur. J. Med. Chem. 2006, 41, 1003.
(16) Gitto, R.; Barreca, M. L.; De Luca, L.; De Sarro, G.; Ferreri, G.;
Quartarone, S.; Russo, E.; Constanti, A.; Chimirri, A. J. Med.
Chem. 2003, 46, 197
(6) For selected examples of biocatalyzed deracemization of amines,
see: (a) Beard, T. M.; Turner, N. J. Chem. Commun. 2002, 246.
ACS Paragon Plus Environment