G. A. Blanco, M. T. Baumgartner / Tetrahedron Letters 52 (2011) 7061–7063
7063
Table 2
Reactions of 2-naphthol (17) with 2 in DMSO
Entry
Ratio 2:17
Reaction time (h)
Yielda of 18 (%)
S
1
2
3
1:6b
1:2c
1:2
2
2
7
75
56
72
OH
OH
S
a
Determined by gas chromatography using the internal standard method and
19
20
refer to initial moles of disulfide.
b
[2] = 0.08 M, [17] = 0.48 M.
c
[2] = 0.08 M, [17] = 0.16 M.
Figure 2. 1-(2-Naphthylthio)-2-naphthol and 1-phenylthio-9-phenanthrol.
The use of disulfides as sulfenylating reagents was also tested
with hydroxyaryls. The reaction of 2-naphthol (17) and disulfide
2 (ratio 2:17 = 1:6), in the presence of potassium t-butoxide, affor-
ded 1-phenylthio-2-naphthol (18) in 75% yield (Eq. 3) (Table 2, en-
try 1). When a smaller concentration of 17 was used (ratio
2:17 = 1:2), product 18 was obtained with yields of 56% and 72%
at different reaction times, 2 and 7 h, respectively (Table 2, entries
2 and 3).
Supplementary data
Supplementary data (general methods, materials, experimental
procedures and 1H NMR, 13C NMR and MS of products 4, 7, 8, 10,
12, 13, 14, 16, 18, 19 and 20) associated with this article can be
References and notes
1. Trost, B. M.; Salzmann, T. N.; Hiroi, K. J. Am. Chem. Soc. 1976, 98, 4887–4902;
Groenewegen, P.; Kallenberg, H.; Van Der Gen, A. Tetrahedron Lett. 1979, 20,
2817–2820; Trost, B. M.; Massiot, G. S. J. Am. Chem. Soc. 1977, 99, 4405–
4412.
2. Seebach, D.; Teschner, M. Tetrahedron Lett. 1973, 14, 5113–5116.
3. Scholz, D. Synthesis 1983, 944–945.
4. Trost, B. M. Chem. Rev. 1978, 78, 363–382; Trost, B. M. Acc. Chem. Res. 1978, 11,
453–461.
5. Foray, G.; Peñéñory, A. B.; Rossi, R. A. Tetrahedron Lett. 1997, 38, 2035–2038.
6. Huang, C. H.; Liao, K. S.; De, S. K.; Tsai, Y. M. Tetrahedron Lett. 2000, 41, 3911–
3914.
7. Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jorgensen, K. A. Angew. Chem., Int. Ed.
2005, 44, 794–797; Sobhani, S.; Fielenbach, D.; Marigo, M.; Wabnitz, T. C.;
Jorgensen, K. A. Chem. Eur. J. 2005, 11, 5689–5694; Srisailam, S. K.; Togni, A.
Tetrahedron: Asymmetry 2006, 17, 2603–2607; Jereb, M.; Togni, A. Chem. Eur. J.
2007, 13, 9384–9392.
8. Raban, M.; Chern, L.-H. J. Org. Chem. 1980, 45, 1688–1691; Atkinson, J. G.;
Hamel, P.; Girard, Y. Synthesis 1988, 480–481; Matsugi, M.; Murata, K.; Nambu,
H.; Kita, Y. Tetrahedron Lett. 2001, 42, 1077–1080; Matsugi, M.; Murata, K.;
Gotanda, K.; Nambu, H.; Anilkumar, G.; Matsumoto, K.; Kita, Y. J. Org. Chem.
2001, 66, 2434–2441; Campbell, J. A.; Broka, C. A.; Gong, L.; Walker, K. A. M.;
Wang, J.-H. Tetrahedron Lett. 2004, 45, 4073–4075; Schlosser, K. M.; Krasutsky,
A. P.; Hamilton, H. W.; Reed, J. E.; Sexton, K. Org. Lett. 2004, 6, 819–821; Tudge,
M.; Tamiya, M.; Savarin, C.; Humphrey, G. R. Org. Lett. 2006, 8, 565–568.
9. Maeda, Y.; Koyabu, M.; Nishimura, T.; Uemura, S. J. Org. Chem. 2004, 69, 7688–
7693.
1) DMSO,
OH
S
KOC(CH3)3
2
+
+
SH
OH
2) HCl
17
18
ð3Þ
In analogous conditions, 17 reacted with disulfide 9 to give 1-
(2-naphthylthio)-2-naphthol (19) in 84% isolated yield. Moreover,
the reaction of 9-phenanthrol with disulfide 2 afforded 1-phenyl-
thio-9-phenanthrol (20) in 65% isolated yield (Fig. 2). In both cases
the hydroxyaryl/disulfide ratio used was 2:1 with a reaction time
of 5 h. These latter results show the applicability of this methodol-
ogy to the sulfenylation of hydroxyaryls.
In recent years there have been new studies on sulfenylation
processes using more specific reagents, and the traditional methods
have been restudied. We present here the sulfenylation of nitroalk-
anes and hydroxyaryls using stable commercial sulfenylating re-
agents as disulfides, under conditions with low environmental
impact. The synthesis of arylthionitroalkanes and arylthiohydrox-
yaryls was achieved in moderate to good yields in very mild condi-
tions, improving the reported procedures to obtain these
compounds.
10. Mikolajczyk, M.; Balczewski, P.; Chefczynska, H.; Szadowiak, A. Tetrahedron
2004, 60, 3067–3074.
11. Bischoff, L.; David, C.; Martin, L.; Meudal, H.; Roques, B.-P.; Fournié-Zaluski, M.-
C. J. Org. Chem. 1997, 62, 4848–4850.
12. Hesselbarth, F.; Wenschuh, E. Heteroat. Chem. 1992, 3, 631–636.
13. Seebach, D.; Lehr, F. Helv. Chim. Acta 1979, 62, 2239–2252; Barret, A. G. M.;
Graboski, G. G.; Russell, M. A. J. Org. Chem. 1986, 51, 1012–1015; Barret, A. G.
M.; Graboski, G. G.; Russell, M. A. J. Org. Chem. 1985, 50, 2603–2605; Barret, A.
G. M.; Graboski, G. G.; Sabat, M.; Taylor, S. J. J. Org. Chem. 1987, 52, 4693–4702;
Barret, A. G. M.; Dhanak, D.; Graboski, G. G.; Taylor, S. J. Org. Syn. Coll. 1993, 8,
550–551.
14. Miyashita, M.; Kumazawa, T.; Yoshikoshi, A. J. Org. Chem. 1980, 45, 2945–2950.
15. Bordwell, F. G.; Bartmess, J. E. J. Org. Chem. 1978, 43, 3101–3107.
16. Fujisawa, T.; Yamamoto, M.; Tsuchihashi, G.-I. Synthesis 1972, 11, 624–625.
17. Fujisawa, T.; Kojima, T. J. Org. Chem. 1973, 38, 687–690.
18. Bug, T.; Lemek, T.; Mayr, H. J. Org. Chem. 2004, 69, 7565–7576.
Acknowledgments
This work was supported by Agencia Córdoba Ciencia (ACC),
Consejo Nacional de Investigaciones Científicas y Técnicas (CONI-
CET) and Secretaría de Ciencia y Tecnología (SECyT), Universidad
Nacional de Córdoba, Argentina. G.A.B. thanks CONICET for the
award of a fellowship.