A R T I C L E S
Heppekausen et al.
was recognized and explored.12,13 The fact that nonterminal
alkynes are required as the substrates may be one reason for
the smaller impact compared with olefin metathesis,14,15 yet a
growing number of applications in the recent literature to natural
product synthesis,4 coordination chemistry,16 and material
science17,18 show that this inherent drawback can be (partly)
compensated for or even turned to advantage by the excellent
selectivity of alkyne metathesis, as well as by the possibility of
further elaborating the acetylenic products primarily formed in
a diverse fashion by a host of different postmetathetic
transformations.19-24
Alkyne metathesis was originally discovered using a hetero-
geneous catalyst composed of tungsten oxide on silica which
was operative only at 200-450 °C.6,25 Shortly thereafter,
Mortreux and co-workers showed that homogeneous mixtures
comprising Mo(CO)6 and resorcinol (or other phenols) in high-
boiling solvents are active at more manageable temperatures
(ca. 130-160 °C).26 Despite many rounds of optimization of
the molybdenum source, the phenol additive, the solvent, and
the reaction conditions, this simple and cheap system has not
reached the level of activity and selectivity that better-defined
(pre)catalysts can offer.27-29 It was the advent of well-defined
d0-alkylidyne complexes of tungsten,8,30,31 molybdenum,32,33 and
rhenium34,35 that set new standards in the field. Among them,
(11) For early applications to fairly unfunctionalized substrates, see refs
26, 27 and the following: (a) Villemin, D.; Cadiot, P. Tetrahedron
Lett. 1982, 23, 5139. (b) Kaneta, N.; Hirai, T.; Mori, M. Chem. Lett.
1995, 627. (c) Kaneta, N.; Hikichi, K.; Asaka, S.; Uemura, M.; Mori,
M. Chem. Lett. 1995, 1055.
(23) In addition to the established chemistry of alkynes, recent advances
in the carbophilic activation of triple bonds with noble metal catalysts
hold particular promise in this regard; see: (a) Fu¨rstner, A.; Davies,
P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (b) Gorin, D. J.; Toste,
D. Nature 2007, 446, 395. (c) Jime´nez-Nu´n˜ez, E.; Echavarren, A. M.
Chem. Commun. 2007, 333. (d) Hashmi, A. S. K. Chem. ReV. 2007,
107, 3180. (e) Fu¨rstner, A. Chem. Soc. ReV. 2009, 38, 3208.
(24) The established alkyne metathesis catalysts do not react with alkenes,
whereas alkene metathesis catalysts can attack alkynes. For an early
application exploiting this orthogonal selectivity profile, see: Fu¨rstner,
A.; Dierkes, T. Org. Lett. 2000, 2, 2463.
(12) Fu¨rstner, A.; Seidel, G. Angew. Chem., Int. Ed. 1998, 37, 1734.
(13) Fu¨rstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999,
121, 11108.
(14) (a) Terminal alkynes are mainly polymerized in the presence of the
standard catalysts, cf.: Bray, A.; Mortreux, A.; Petit, F.; Petit, M.;
Szymanska-Buzar, T. J. Chem. Soc., Chem. Commun. 1993, 197. (b)
Moreover, terminal alkynes are known to degrade Schrock alkylidynes
via formation of deprotiometallacyclobutadiene intermediates, which
could be unambiguously characterized, cf. ref 32a and the following:
McCullough, L. G.; Listemann, M. L.; Schrock, R. R.; Churchill,
M. R.; Ziller, J. W. J. Am. Chem. Soc. 1983, 105, 6729.
(25) For further studies on heterogeneous catalysts for alkyne metathesis,
see ref 53 and the following: (a) Mortreux, A.; Blanchard, M. Bull.
Soc. Chim. Fr. 1972, 1641. (b) Moulijn, J. A.; Reitsma, H. J.;
Boelhouwer, C. J. Catal. 1972, 25, 434. (c) Mortreux, A.; Petit, F.;
Blanchard, M. J. Mol. Catal. 1980, 8, 97.
(15) For a report claiming metathesis of terminal alkynes by a modified in
situ catalyst, see: Coutelier, O.; Nowogrocki, G.; Paul, J.-F.; Mortreux,
A. AdV. Synth. Catal. 2007, 349, 2259.
(16) (a) Bauer, E. B.; Szafert, S.; Hampel, F.; Gladysz, J. A. Organome-
tallics 2003, 22, 2184. (b) Bauer, E. B.; Hampel, F.; Gladysz, J. AdV.
(26) (a) Mortreux, A.; Blanchard, M. J. Chem. Soc., Chem. Commun.
1974, 786. (b) Mortreux, A.; Dy, N.; Blanchard, M. J. Mol. Catal.
1975/76, 1, 101. (c) Mortreux, A.; Delgrange, J. C.; Blanchard, M.;
Lubochinsky, B. J. Mol. Catal. 1977, 2, 73. (d) Mortreux, A.; Petit,
F. Tetrahedron Lett. 1978, 4967.
ˇ
Synth. Catal. 2004, 346, 812. (c) Kotora, M.; Nee`as, D.; St`ıpnie`ka, P.
Collect. Czech. Chem. Commun. 2003, 68, 1897. (d) Bobula, T.;
ˇ
Hudlicky, J.; Nova´k, P.; Gyepes, R.; Cisaøova, I.; St`ıpnie`ka, P.; Kotora,
M. Eur. J. Inorg. Chem. 2008, 3911. (e) Sato, M.; Watanabe, M. Chem.
Commun. 2002, 1574.
(27) (a) Du Plessis, J. A. K.; Vosloo, H. C. M. J. Mol. Catal. 1991, 65,
51. (b) Vosloo, H. C. M.; du Plessis, J. A. K. J. Mol. Catal. A: Chem.
1998, 133, 205. (c) Bencheick, A.; Petit, M.; Mortreux, A.; Petit, F.
J. Mol. Catal. 1982, 15, 93. (d) Pschirer, N. G.; Bunz, U. H. F.
Tetrahedron Lett. 1999, 40, 2481. (e) Brizius, G.; Bunz, U. H. F. Org.
Lett. 2002, 4, 2829. (f) Sashuk, V.; Ignatowska, J.; Grela, K. J. Org.
Chem. 2004, 69, 7748.
(17) (a) Weiss, K.; Michel, A.; Auth, E.-M.; Bunz, U. H. F.; Mangel, T.;
Mu¨llen, K. Angew. Chem., Int. Ed. Engl. 1997, 36, 506. (b)
Kloppenburg, L.; Song, D.; Bunz, U. H. F. J. Am. Chem. Soc. 1998,
120, 7973. (c) Zhang, X.-P.; Bazan, G. C. Macromolecules 1994, 27,
4627. (d) Krouse, S. A.; Schrock, R. R. Macromolecules 1989, 22,
2569. (e) Bunz, U. H. F.; Kloppenburg, L. Angew. Chem., Int. Ed.
1999, 38, 478. (f) Bly, R. K.; Dyke, K. M.; Bunz, U. H. F. J.
Organomet. Chem. 2005, 690, 825. (g) Brizius, G.; Kroth, S.; Bunz,
U. H. F. Macromolecules 2002, 35, 5317. (h) Zhang, W.; Moore, J. S.
Macromolecules 2004, 37, 3973. (i) Brizius, G.; Pschirer, N. G.;
Steffen, W.; Stitzer, K.; zur Loye, H.-C.; Bunz, U. H. F. J. Am. Chem.
Soc. 2000, 122, 12435. (j) Carnes, M.; Buccella, D.; Siegrist, T.;
Steigerwald, M. L.; Nuckolls, C. J. Am. Chem. Soc. 2008, 130, 14078.
(28) For a direct comparison of a Mortreux-type catalyst with more defined
catalysts, see refs 13 and 46d. For an example in which an attempted
alkyne metathesis with a Mortreux-type catalyst failed because of a
competing reaction of the substrate with the phenol additive, see: Ma,
J.; Ku¨hn, B.; Hackl, T.; Butenscho¨n, H. Chem.sEur. J. 2010, 16, 1859.
(29) In most cases the nature of the active catalyst in solution is unknown,
even though it might be guessed on the basis of the extensive
knowledge of the chemistry of metal alkylidynes. Therefore, the
expressions “catalyst” and “precatalyst” are not rigorously distin-
guished in this publication.
(30) (a) Schrock, R. R.; Clark, D. N.; Sancho, J.; Wengrovius, J. H.;
Rocklage, S. M.; Pedersen, S. F. Organometallics 1982, 1, 1645. (b)
Pedersen, S. F.; Schrock, R. R.; Churchill, M. R.; Wasserman, H. J.
J. Am. Chem. Soc. 1982, 104, 6808. (c) Freudenberger, J. H.; Schrock,
R. R.; Churchill, M. R.; Rheingold, A. L.; Ziller, J. W. Organometallics
1984, 3, 1563. (d) Listemann, M. L.; Schrock, R. R. Organometallics
1985, 4, 74. (e) Tonzetich, Z. J.; Lam, Y. C.; Mu¨ller, P.; Schrock,
R. R. Organometallics 2007, 26, 475.
ˇ
(18) (a) Miljanic´, O. S.; Vollhardt, K. P. C.; Whitener, G. D. Synlett 2003,
29. (b) Hellbach, B.; Gleiter, R.; Rominger, F. Synthesis 2003, 2535.
(c) Johnson, C. A.; Lu, Y.; Haley, M. M. Org. Lett. 2007, 9, 3725.
(d) Ge, P.-H.; Fu, W.; Herrmann, W. A.; Herdtweck, E.; Campana,
C.; Adams, R. D.; Bunz, U. H. F. Angew. Chem., Int. Ed. 2000, 39,
3607. (e) Pschirer, N. G.; Fu, W.; Adams, R. D.; Bunz, U. H. F. Chem.
Commun. 2000, 87.
(19) Ring-closing alkyne metathesis in combination with Lindlar-type
semireduction provides a stereoselective entry into macrocyclic (Z)-
alkenes that remain difficult to make by conventional RCM; cf. refs
12, 13. For recent advances toward highly Z-selective alkene metathesis
catalysts, see: Jiang, A. J.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H.
J. Am. Chem. Soc. 2009, 131, 16630.
(31) (a) Beer, S.; Brandhorst, K.; Hrib, C. G.; Wu, X.; Haberlag, B.;
Grunenberg, J.; Jones, P. G.; Tamm, M. Organometallics 2009, 28,
1534. (b) Beer, S.; Hrib, C. G.; Jones, P. G.; Brandhorst, K.;
Grunenberg, J.; Tamm, M. Angew. Chem., Int. Ed. 2007, 46, 8890.
(c) Beer, S.; Brandhorst, K.; Grunenberg, J.; Hrib, C. G.; Jones, P. G.;
Tamm, M. Org. Lett. 2008, 10, 981.
(20) Ring-closing alkyne metathesis in combination with trans-hydrosily-
lation and protodesilylation provides a stereoselective entry into
macrocyclic (E)-alkenes, see: (a) Fu¨rstner, A.; Radkowski, K. Chem.
Commun. 2002, 2182. (b) Lacombe, F.; Radkowski, K.; Seidel, G.;
Fu¨rstner, A. Tetrahedron 2004, 60, 7315.
(32) (a) McCullough, L. G.; Schrock, R. R.; Dewan, J. C.; Murdzek, J. C.
J. Am. Chem. Soc. 1985, 107, 5987. (b) McCullough, L. G.; Schrock,
R. R. J. Am. Chem. Soc. 1984, 106, 4067.
(21) For the formation of an aromatic heterocycle by an RCAM/alkyne
activation sequence, see: Fu¨rstner, A.; Castanet, A.-S.; Radkowski,
K.; Lehmann, C. W. J. Org. Chem. 2003, 68, 1521.
(33) (a) Tsai, Y.-C.; Diaconescu, P. L.; Cummins, C. C. Organometallics
2000, 19, 5260. (b) Blackwell, J. M.; Figueroa, J. S.; Stephens, F. H.;
Cummins, C. C. Organometallics 2003, 22, 3351.
(22) For the formation of 1,3-dienes by an alkyne metathesis/enyne cross-
metathesis sequence, see: (a) Fu¨rstner, A.; Larionov, O.; Flu¨gge, S.
Angew. Chem., Int. Ed. 2007, 46, 5545. (b) Fu¨rstner, A.; Flu¨gge, S.;
Larionov, O.; Takahashi, Y.; Kubota, T.; Kobayashi, J. Chem.sEur.
J. 2009, 15, 4011. (c) Groaz, E.; Banti, D.; North, M. Eur. J. Org.
Chem. 2007, 3727.
(34) Weinstock, I. A.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc.
1991, 113, 135.
(35) Chabanas, M.; Baudouin, A.; Cope´ret, C.; Basset, J.-M. J. Am. Chem.
Soc. 2001, 123, 2062.
9
11046 J. AM. CHEM. SOC. VOL. 132, NO. 32, 2010