Organic Letters
Letter
2012, 51, 1106. (d) Brooks, A. F.; Topczewski, J. J.; Ichiishi, N.; Sanford,
M. S.; Scott, P. J. H. Chem. Sci. 2014, 5, 4545. (e) Cole, E. L.; Stewart, M.
N.; Littich, R.; Hoareau, R.; Scott, P. J. H. Curr. Top. Med. Chem. 2014,
14, 875. (f) Liang, S. H.; Vasdev, N. Angew. Chem., Int. Ed. 2014, 53,
11416.
K2CO3 requires backflushing of the QMA cartridge. As such, this
process is challenging to automate and can lead to the introduction of
cyclotron byproducts to the reaction mixture.
(21) Katsifis, A.; Hamacher, K.; Schnitter, J.; Stocklin, G. Appl. Radiat.
̈
Isot. 1993, 44, 1015.
(22) Lee, S. J.; Oh, S. J.; Chi, D. Y.; Moon, D. H.; Ryu, J. S. Bull. Korean
Chem. Soc. 2012, 33, 2177.
(23) Lemaire, C. F.; Aerts, J. J.; Voccia, S.; Libert, L. C.; Mercier, F.;
Goblet, D.; Plenevaux, A. R. P.; Luxen, A. J. Angew. Chem., Int. Ed. 2010,
49, 3161.
(5) (a) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.;
́
́
̃
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev.
2014, 114, 2432. (b) Gillis, E. P.; Eastman, K. J.; Donnelly, D. J.;
(24) Pyridine is an accepted solvent for use in (radio) pharmaceutical
synthesis with a residual concentration limit of 200 ppm. Impurities:
Guideline for Residual Solvents Q3C(R5). International Conference on
Harmonization of Technical Requirements for Registration of Pharmaceut-
(25) Eldrup, A. B.; Prhavc, M.; Brooks, J.; Bhat, B.; Prakash, T. P.;
Song, Q.; Bera, S.; Bhat, N.; Dande, P.; Cook, P. D.; Bennett, C. F.;
Carroll, S. S.; Ball, R. G.; Bosserman, M.; Burlein, C.; Colwell, L. F.; Fay,
J. F.; Flores, O. A.; Getty, K.; LaFemina, R. L.; Leone, J.; MacCoss, M.;
McMasters, D. R.; Tomassini, J. E.; Von Langen, D.; Wolanski, B.;
Olsen, D. B. J. Med. Chem. 2004, 47, 5284.
(26) Frost, J. M.; Dart, J. M.; Tietje, K. R.; Garrison, T. R.; Grayson, G.
K.; Daza, A. V.; El-Kouhen, O. F.; Miller, L. N.; Li, L.; Yao, B. B.; Hsieh,
G. C.; Pai, M.; Zhu, C. Z.; Chandran, P.; Meyer, M. D. J. Med. Chem.
2008, 51, 1904.
(27) Aryl trifluoroborates are less desirable as radiofluorination
precursors due to the potential for isotopic exchange.
(28) (a) Hamill, T. G.; Krause, S.; Ryan, C.; Bonnefous, C.; Govek, S.;
Seiders, T. J.; Cosford, N. D.; Roppe, J.; Kamenecka, T.; Patel, S.;
Gibson, R. E.; Sanabria, S.; Riffel, K.; Eng, W.; King, C.; Yang, X.; Green,
M. D.; O’Malley, S. S.; Hargreaves, R.; Burns, H. D. Synapse 2005, 56,
205. (b) Wang, J.-Q.; Tueckmantel, W.; Zhu, A.; Pellegrino, D.;
Brownell, A.-L. Synapse 2007, 61, 951. (c) Lim, K.; Labaree, D.; Li, S.;
Huang, Y. Appl. Radiat. Isot. 2014, 94, 349. (d) Liang, S. H.; Yokell, D. L.;
Jackson, R. N.; Rice, P. A.; Callahan, R.; Johnson, K.; Alagille, D.;
Tamagnan, G.; Collier, T. L.; Vasdev, N. MedChemComm 2014, 5, 432.
(e) Stephenson, N. A.; Holland, J. P.; Kassenbrock, A.; Yokell, D. L.;
Livni, E.; Liang, S. H.; Vasdev, N. J. Nucl. Med. 2015, 56, 489.
(29) While this manuscript was in preparation, a small-scale
microfluidic method was published that reports 68% RCC to [18F]
FPEB. See: Calderwood, S.; Collier, T. L.; Gouverneur, V.; Liang, S. H.;
Vasdev, N. J. Fluorine Chem. 2015, 178, 249.
(6) (a) Adams, D. J.; Clark, J. H. Chem. Soc. Rev. 1999, 28, 225.
(b) Tredwell, M.; Gouverneur, V. Angew. Chem., Int. Ed. 2012, 51,
11426.
(7) (a) Mu, L.; Fischer, C. R.; Holland, J. P.; Becaud, J.; Schubiger, P.
A.; Schibli, R.; Ametamey, S. M.; Graham, K.; Stellfeld, T.; Dinkelborg,
L. M.; Lehman, L. Eur. J. Org. Chem. 2012, 2012, 889. (b) Sander, K.;
Gendron, T.; Yiannaki, E.; Cybulska, K.; Kalber, T. L.; Lythgoe, M. F.;
Årstad, E. Sci. Rep. 2015, 5, 9941.
́
(8) Simeon, F. G.; Lu, S.; Pike, V. W. J. Label. Compd. Radiopharm.
2015, 58 (Suppl1), S1.
(9) (a) Satyamurthy, M.; Barrio, J. R. Patent WO2010/117435 A2,
2010. (b) Cardinale, J.; Ermert, J.; Humpert, S.; Coenen, H. H. RSC Adv.
2014, 4, 17293. (c) Rotstein, B. H.; Stephenson, N. A.; Vasdev, N.;
Liang, S. H. Nat. Commun. 2014, 5, 4365. (d) Stephenson, N. A.;
Holland, J. P.; Kassenbrock, A.; Yokell, D. L.; Livni, E.; Liang, S. H.;
Vasdev, N. J. Nucl. Med. 2015, 56, 489.
(10) (a) Ichiishi, N.; Brooks, A. F.; Topczewski, J. J.; Rodnick, M. E.;
Sanford, M. S.; Scott, P. J. H. Org. Lett. 2014, 16, 3224. (b) Ichiishi, N.;
Canty, A. J.; Yates, B. F.; Sanford, M. S. Org. Lett. 2013, 15, 5134.
(11) (a) Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.;
Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T.
Science 2011, 334, 639. (b) Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem.
Soc. 2012, 134, 17456. (c) Kamlet, A. S.; Neumann, C. N.; Lee, E.;
Carlin, S. M.; Moseley, C. K.; Stephenson, N.; Hooker, J. M.; Ritter, T.
PLoS One 2013, 8, e59187. (d) Ren, H.; Wey, H.-Y.; Strebl, M.;
Neelamegam, R.; Ritter, T.; Hooker, J. M. ACS Chem. Neurosci. 2014, 5,
611. (e) Tredwell, M.; Preshlock, S. M.; Taylor, N. J.; Gruber, S.;
Huiban, M.; Passchier, J.; Mercier, J.; Gen
Angew. Chem., Int. Ed. 2014, 53, 7751.
́
icot, C.; Gouverneur, V.
(12) Ye, Y.; Schimler, S. D.; Hanley, P. S.; Sanford, M. S. J. Am. Chem.
Soc. 2013, 135, 16292.
(13) For examples of electrophilic fluorination of aryl boron
compounds, see: (a) Furuya, T.; Ritter, T. Org. Lett. 2009, 11, 2860.
(b) Fier, P. S.; Luo, J.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2552.
(c) Mazzotti, A. R.; Campbell, M. G.; Tang, P.; Murphy, J. M.; Ritter, T.
J. Am. Chem. Soc. 2013, 135, 14012. (d) Stenhagen, I. S. R.; Kirjavainen,
A. K.; Forsback, S. J.; Jørgensen, C. G.; Robins, E. G.; Luthra, S. K.; Solin,
O.; Gouverneur, V. Chem. Commun. 2013, 49, 1386. (e) Ye, Y.; Sanford,
M. S. J. Am. Chem. Soc. 2013, 135, 4648.
́
(14) Perez, D. I.; Palomo, V.; Perez, C.; Gil, C.; Dans, P. D.; Luque, F.
J.; Conde, S.; Martínez, A. J. Med. Chem. 2011, 54, 4042.
(15) Aldrich price (accessed Sep 26, 2015) [Cu(OTf)2(py)4] (CAS:
113110-58-0) $143,075/mol; Cu(OTf)2 (CAS: 34946-82-2): $3154/
mol.
(16) Gouverneur’s method is challenging to automate because it is
sensitive to base (see ref 19) and also because the requirement for O2 in
the reaction is incompatible with the inert push gases used in modern
automated radiochemistry synthesis modules.
(17) Aryl boronic acids are more widely available than the
corresponding aryl boronate esters. For instance, 1089 aryl boronic
acids are commercially available from Sigma-Aldrich versus 218 aryl
(18) Hall, D. G., Ed. Boronic Acids: Preparation and Applications in
Organic Synthesis. Medicine and Materials, 2nd ed.; Wiley−VCH Verlag:
Weinheim, 2011.
(19) Zlatopolskiy, B. D.; Zischler, J.; Krapf, P.; Zarrad, F.; Urusova, E.
A.; Kordys, E.; Endepols, H.; Neumaier, B. Chem. - Eur. J. 2015, 21, 5972.
(20) Neumaier’s modified elution conditions (i.e., elution with 60 μg of
K2CO3) were not practical in our system, since this small quantity of
D
Org. Lett. XXXX, XXX, XXX−XXX