Communication
Nakashima, H. Akutsu, T. Sakai, Y. Matsushima, M. Kawada, T. Miura, Org.
reaction of α-branched aldehydes with vinyl sulfone. Compared
with previous reports, the new DMM catalyst realized higher
enantioselectivity. The DFT calculation revealed that the N,N-
dibenzyl DMM motif served as a single H-bond donor, but the
transition states were secondary stabilized by multiple non-
covalent interactions, including the CÀ H···O interaction. Push-
pull effects in the DMM backbone are key factors for enhancing
such weak interactions. Currently, the developments of novel
organocatalysts bearing the N,N-dialkyl DMM motif and applica-
tions to other asymmetric reactions are being investigated in
our laboratory.
b) S. Sulzer-Mosse, A. Alexandre, J. Mareda, G. Bollot, G. Bernardinelli, Y.
Filinchuk, Chem. Eur. J. 2009, 15, 3204; c) A. Quintard, S. Belot, E.
Nakashima, M. Murahashi, H. Yuasa, M. Ina, N. Tada, A. Itoh, S.
[9] a) J. M. Robertson, A. R. Ubbelohde, Proc. R. Soc. London Ser. A 1939,
170, 222; b) F. Kato, T. Sugimoto, K. Harada, K. Watanabe, Y. Matsumoto,
Phys. Rev. Mater. 2019, 3, 112001.
[10] Conformational analysis of N-benzyl-N’-isopropyl DMM using dynamic
NMR technique revealed that E,Z-/Z,E-conformers predominantly ex-
isted in THF-d6. This conformational preference suggest that N,N’-
disubstituted catalyst 1 may act as a single H-bond catalyst similar to
the improved catalyst 5a. Recently, Jolliffe et al. pointed out such
conformational preference in DMM motif, see: J. D. E. Lane, S. N. Berry,
Acknowledgements
This work was supported in part by JSPS KAKENHI Grant Number
20K06948.
[11] The reaction of 4a in a synthetic scale was shown in the SI.
[12] When enantiomerically enriched 4a (92% ee) was treated for 24 h at
room temperature by 10 mol% of rac-5a in the presence of rac-2a and
TFA, 4a was recovered in 99% without significant loss of ee (91% ee)
(See: the SI). This result supports that the retro-reaction giving rise to a
racemic product is negligible under the present conditions.
Conflict of Interest
[13] a) A. Kamal, M. Sathish, V. Srinivasulu, J. Chetna, K. C. Shekar, S.
1175; c) S. Bertelson, M. Marigo, S. Brandes, P. Dinér, K. A. Jørgensen, J.
Am. Chem. Soc. 2006, 128, 12973; d) G. G. Gerosa, M. O. Marcarino, R. A.
review, see: P. H.-Y. Cheong, C. Y. Legault, J. M. Um, N. Çelebi-Ölcüm,
The authors declare no conflict of interest.
Keywords: organocatalyst
·
multiple interactions
· vinyl
sulfone · conjugate addition · hydrogen bond
[14] a) C. F. Matta, R. J. Boyd (Eds.), The Quantum Theory of Atoms in
Molecules, Wiley-VCH: Weinheim, 2007; b) R. F. W. Bader, Atoms in
Molecules: A Quantum Theory, Oxford University Press: Oxford, 1990.
[15] Jiang and co-workers proposed a transition state model with similar
[1] G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural
Chemistry and Biology, Oxford University Press: Oxford, 1999.
2004, 43, 5138; b) S. B. Tsogpoeva, Eur. J. Org. Chem. 2007, 1701; c) A.
Dondoni, A. Massi, Angew. Chem. Int. Ed. 2008, 47, 5138; d) A. Lattanzi,
g) U. Scheffer, R. Mahrwald, Chem. Eur. J. 2012, 19, 14346.
[5] Y. Kanada, H. Yuasa, K. Nakashima, M. Murahashi, N. Tada, A. Itoh, Y.
CÀ H···O interactions by thiourea catalyst bearing
a
(3,5-bis
(trifluoromethyl)phenyl)methyl group. See: Q. Liu, B. Qiao, K. F. Chin, C.-
[16] a) A. V. Afonin, I. A. Ushakov, A. V. Vashchenko, E. V. Kondrashov, A. Y.
[17] F. Weinhold, C. R. Landis, Valency and Bonding: A Natural Bond Orbital
Donor-Acceptor Perspective, Cambridge University Press, 2004.
[18] In DFT computations of Nagasawa’s guanidinium catalysed reactions,
similar π-bond distortion was found. See: M. Kato, S. Hirao, K. Nakano,
M. Sato, M. Yamanaka, Y. Sohtome, K. Nagasawa, Chem. Eur. J. 2015, 21,
18606.
[19] H. Yanai, T. Suzuki, F. Kleemiss, H. Fukaya, Y. Dobashi, L. A. Malaspina, S.
[20] S. Arimitsu, M. Higashi, Importance of CÀ H Hydrogen Bonding in
Asymmetric Catalysis, in Noncovalent Interactions in Catalysis, K. T
Mahmudov, M. N Kopylovich, M F. C Guedes da Silva, A. J. L. Pombeiro
(Eds.), RSC publishing, 2019, pp. 26–65.
11660; c) S. Shirakawa, S. Liu, S. Kaneko, Y. Kumatabara, A. Fukuda, Y.
Lam, X. Wang, F. Tan, W.-H. Ng, Y.-L. S. Tse, Y.-Y. Yeung, ACS Catal. 2019,
[6] a) K. Nakashima, S. Hirashima, M. Kawada, Y. Koseki, N. Tada, A. Itoh, T.
Nakashima, N. Watanabe, Y. Koseki, K. Mukai, Y. Kanada, N. Tada, A. Itoh,
Y. Fujino, R. Arai, T. Sakai, M. Kawada, Y. Koseki, M. Murahashi, N. Tada,
Hirashima, H. Akutsu, Y. Koseki, N. Tada, A. Itoh, T. Miura, Tetrahedron
[7] a) S. Hirashima, R. Arai, K. Nakashima, N. Kawai, J. Kondo, Y. Koseki, T.
Arai, S. Hirashima, T. Nakano, M. Kawada, H. Akutsu, K. Nakashima, T.
Manuscript received: May 6, 2021
Revised manuscript received: June 22, 2021
Accepted manuscript online: July 2, 2021
Version of record online: ■■■, ■■■■
Chem Asian J. 2021, 16, 1–5
4
© 2021 Wiley-VCH GmbH
��
These are not the final page numbers!