Organic Letters
Letter
1987, 20, 243−249. (c) Denmark, S. E.; Weber, E. J. J. Am. Chem. Soc.
1984, 106, 7970−7971.
Based on our NMR evidence, the following mechanistic
rationale is proposed: The aldehyde reacts with allylstannane in
the presence of BF3·OEt2 to form a boryl ether and the positive
(or partially positive) Sn−F intermediate.24 PMHS, activated
by B(C6F5)3,25 reduces this Sn−F intermediate into tributyltin
hydride. Tributyltin hydride then enters the B(C6F5)3 catalytic
cycle to produce the corresponding vinylstannanes.19 The
NMR data for the Sn−F species indicated that it is not Bu3SnF,
which appears as a triplet at δ −10 ppm with J = 1350 Hz in
hexane,26 or a Bu3SnF· B(C6F5)3 adduct, which appears at −18
ppm in toluene.20 To further eliminate the possibility of
Bu3SnF involvement, hydrostannation of phenylacetylene (3)
was performed with premade tributyltin fluoride (1 equiv),
B(C6F5)3 (20 mol %), and PMHS (2 equiv). (Z)- and (E)-
vinylstannanes were produced in almost equal amounts with a
combined yield of 11%. The unselective product formation and
low yield obtained further support the unlikelihood of Bu3SnF
being reduced to Bu3SnH in our one-pot protocol.
(5) Nakamura, H.; Iwama, H.; Yamamoto, Y. J. Am. Chem. Soc. 1996,
118, 6641−6647.
(6) Yamamoto, Y.; Maruyama, K. Heterocycles 1982, 18, 357−386.
(7) Wuts, P. G. M.; Obrzut, M. L. Tetrahedron Lett. 1984, 25, 4051−
4054.
(8) Yamamoto, Y.; Yatagai, H.; Maruyama, K. J. Am. Chem. Soc. 1981,
103, 3229−3231.
(9) Rosenberg, S.; Leino, R. Tetrahedron Lett. 2009, 50, 5305−5307.
(10) Canterbury, D. P.; Micalizio, G. C. J. Am. Chem. Soc. 2010, 132,
7602−7604.
(11) Nicolaou, K. C.; Leung, G. Y. C.; Dethe, D. H.; Guduru, R.; Sun,
Y.-P.; Lim, C. S.; Chen, D. Y.-K. J. Am. Chem. Soc. 2008, 130, 10019−
10023.
(12) For allylation/alkyne hydrostannation sequences with stoichio-
metric amounts of tin, see: (a) Fliegel, F.; Beaudet, I.; Quintard, J.-P. J.
Organomet. Chem. 2001, 624, 383−387. (b) Toshima, K.; Arita, T.;
Kato, K.; Tanaka, D.; Matsumura, S. Tetrahedron Lett. 2001, 42, 8873−
8876. (c) Chakraborty, T. K.; Pulukuri, K. K.; Sreekanth, M.
Tetrahedron Lett. 2010, 51, 6444−6446. (d) Kerric, G.; Grognec, E.
L.; Fargeas, V.; Zammattio, F.; Quintard, J.-P.; Biesemans, M.; Willem,
R. J. Organomet. Chem. 2010, 695, 1414−1424. (e) Candy, M.; Tomas,
L.; Parat, S.; Heran, V.; Bienayme, H.; Pons, J.-M.; Bressy, C. Chem.
Eur. J. 2012, 18, 14267−14271 and ref 11.
(13) For a allylation/allene hydrostannation, see: Chang, H.-M.;
Cheng, C.-H. Org. Lett. 2000, 2, 3439−3442.
(14) Yano, K.; Baba, A.; Matsuda, H. Bull. Chem. Soc. Jpn. 1992, 65,
66−70.
(15) (a) Gervorgyan, V.; Liu, J.-X.; Yamamoto, Y. Chem. Commun.
1998, 37−38. (b) Maleczka, R. E., Jr.; Terrell, L. R.; Clark, D. H.;
Whitehead, S. L.; Gallagher, W. P.; Terstiege, I. J. Org. Chem. 1999, 64,
5958−5965.
(16) Yamamoto, Y.; Yatagai, H.; Naruta, Y.; Maruyama, K. J. Am.
Chem. Soc. 1980, 102, 7107−7109.
In summary, we have developed a one-pot allylation−
hydrostannation sequence of alkynals where tin waste from the
allylation step is successfully recycled for use in the hydro-
stannation reaction. The unique reagent mix of this one-pot
protocol selectively affords (Z)-stannanes unlike the E/Z
generating stepwise reaction protocol. The allylation−hydro-
stannation product of the reaction can be manipulated to more
complex molecules. Monitoring the reaction with 119Sn and 11
B
NMR revealed that a Sn−F intermediate is formed during the
BF3·OEt2-mediated reaction between the aldehyde and
allyltributylstannane. That Sn−F intermediate is reduced to
Bu3SnH by B(C6F5)3-activated PMHS. B(C6F5)3 also acts as a
catalyst for the subsequent hydrostannation.
(17) (a) Boaretto, A.; Morton, D.; Tagliavini, G.; Ganis, P. J.
Organomet. Chem. 1987, 321, 199−207. (b) Denmark, S. E.; Wilson,
T.; Willson, T. M. J. Am. Chem. Soc. 1988, 110, 984−986. (c) Marshall,
J. A.; Gung, W. Y. Tetrahedron Lett. 1989, 30, 7349−7352. (d) Harston,
P.; Wardell, J. L.; Marton, D.; Tagliavini, G.; Smith, P. J. Inorg. Chim.
Acta 1989, 162, 245−250. (e) Marshall, J. A.; Gill, K. J. Organomet.
Chem. 2001, 624, 294−299. (f) Keck, G. E.; Andrus, M. B.; Castellino,
S. J. Am. Chem. Soc. 1989, 111, 8136−8141. (g) Cokley, T. M.; Harvey,
P. J.; Marshall, R. L.; McCluskey, A.; Young, D. J. J. Org. Chem. 1997,
62, 1961−1964.
(18) (a) Kazmaier, U.; Schauss, D.; Pohlman, M. Org. Lett. 1999, 1,
1017−1019. (b) Maleczka, R. E., Jr.; Ghosh, B.; Gallagher, W. P.;
Baker, A. J.; Muchnij, J. A.; Szymanski, A. L. Tetrahedron 2013, 69,
4000−4008.
(19) Asao, N.; Yamamoto, Y. Bull. Chem. Soc. Jpn. 2000, 73, 1071−
1087.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental details and product characterization data. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
(20) See the Supporting Information for details.
ACKNOWLEDGMENTS
■
(21) Monitoring these reactions using NMR proved to be
challenging. Thorough mixing, careful temperature control, and
accurate reagent addition were essential to success.20
(22) Davies, A. G. Organotin Chemistry, 2nd ed.; Wiley-VCH:
Weinheim, Germany, 2004.
We thank A. Daniel Jones and Lijun Chen of MSU’s Mass
Spectrometry Core for valuable discussions and technical
assistance. We also thank the National Science Foundation
(CHE-9984644) and the Astellas USA Foundation for funding.
(23) (a) Dakternieks, D.; Zhu, H. Organometallics 1992, 11, 3820−
3825. (b) Al-Juaid, S. S.; Dhaher, S. M.; Eaborn, C.; Hitchcock, P. B.;
Smith, J. D. J. Organomet. Chem. 1987, 325, 117−127. (c) Plass, W.;
Verkade, J. G. Inorg. Chem. 1993, 32, 5153−5159.
(24) For a “B−F−Sn” compound, see: Blackwell, J. M.; Piers, W. E.;
McDonald, R. J. Am. Chem. Soc. 2002, 124, 1295−1306.
(25) Chandrasekhar, S.; Reddy, C. R.; Babu, B. N. J. Org. Chem.
2002, 67, 9080−9082.
(26) Kim, Y. W.; Labouriau, A.; Taylor, C. M.; Earl, W. L.; Weberlow,
L. G. J. Phys. Chem. 1994, 98, 4919−4922.
REFERENCES
■
(1) (a) Maleczka, R. E., Jr.; Terstiege, I. J. Org. Chem. 1998, 63,
9622−9623. (b) Maleczka, R. E., Jr.; Gallagher, W. P. Org. Lett. 2001,
3, 4173−4176. (c) Gallagher, W. P.; Terstiege, I.; Maleczka, R. E., Jr. J.
Am. Chem. Soc. 2001, 123, 3194−3204.
(2) Pratt, A. J.; Thomas, E. J. J. Chem. Soc., Chem. Commun. 1982,
1115−1117.
(3) Yamamoto, Y.; Maruyama, K.; Matsumoto, K. J. Chem. Soc.,
Chem. Commun. 1983, 489−490.
(4) (a) Keck, G. E.; Salvin, K. A.; Cressman, E. N. K.; Abbott, D. E. J.
Org. Chem. 1994, 59, 7889−7896. (b) Yamamoto, Y. Acc. Chem. Res.
2321
dx.doi.org/10.1021/ol500460u | Org. Lett. 2014, 16, 2318−2321