8
G. REZANEJADE BARDAJEE ET AL.
20,5,6(9H)-Trione Derivatives Catalyzed by MgCl2. Tetrahedron
Lett. 2015, 56, 1072–1075.
22. Li, B. L.; Li He, P.; Fang, X. N.; Li, C. X.; Sun, J. L.; Mo, L. P.;
Zhang, Z. H. One-Pot Four-Component Synthesis of Highly
Substituted Pyrroles in Gluconic Acid Aqueous Solution.
Tetrahedron 2013, 69, 7011–7018.
23. Bayat, M.; Nasri, S.; Notash, B. Synthesis of New 3-
Cyanoacetamide Pyrrole and 3-Acetonitrile Pyrrole Derivatives.
Tetrahedron 2017, 73, 1522–1527.
24. Zhao, M. N.; Ren, Z. H.; Yang, D. S.; Guan, Z. H. Iron-
Catalyzed Radical Cycloaddition of 2 H -Azirines and Enamides
for the Synthesis of Pyrroles. Org. Lett. 2018, 20, 1287–1290.
25. Guchhait, S. K.; Sisodiya, S.; Saini, M.; Shah, Y. V.; Kumar, G.;
Daniel, D. P.; Hura, N.; Chaudhary, V. Synthesis of
Polyfunctionalized Pyrroles via a Tandem Reaction of Michael
Addition and Intramolecular Cyanide-Mediated Nitrile-to-Nitrile
Condensation. J. Org. Chem. 2018, 83, 5807–5815.
26. Motamedi, R.; Ebrahimi, F.; Rezanejade Bardajee, G. Cu(II)-
Schiff base /SBA-15 as an Efficient Catalyst for Synthesis of
Benzopyrano[3,2-c] Chromene-6,8-Dione Derivatives. Asian J.
Green Chem. 2019, 3, 22.
27. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Nonionic
Triblock and Star Diblock Copolymer and Oligomeric Surfactant
Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous
Silica Structures. J. Am. Chem. Soc. 1998, 120, 6024–6036.
28. Masteri, F.; Farzaneh, M. F.; Ghandi, M. Synthesis and
Characterization of Molybdenum Complexes with Bidentate
Schiff Base Ligands within Nano Reactors of MCM-41 as
Epoxidation Catalysts. J. Mol. Catal. A Chem. 2006, 248, 53.
29. Lim, M. H.; Stein, A.; Comparative Studies of Grafting and
Direct Syntheses of Inorganic -Organic Hybrid Mesoporous
Materials. Chem. Mater. 1999, 11, 3285.
30. Silveira, C. C.; Mendes, S. R.; Martins, G. M.; Schlo€sser, S. C.;
Kaufman, T. S. Modular CeCl3ꢂ7H2O-Catalyzed Multi-
Component Synthesis of 1,2,3,4-Tetrasubstituted Pyrroles under
Microwave Irradiation and Their Further Trichloroisocyanuric
Acid-Mediated Conversion into 5-Sulfenylpyrrole Derivatives.
Tetrahedron 2013, 69, 9076–9085.
31. Sukhendu, M.; Srijit, B.; Umasish, J. Iron (Iii) Catalyzed Four
Component Coupling Reaction Of 1,3-Dicarbonyl Compound
Amines, Aldehydes, And Nitroalkanes A Simple And Direct
Synthesis Of Functionalized Pyrroles. J. Org. Chem. 2010, 75, 1674.
32. Ablimit, A.; Qicai, X.; Aijun, L.; Ming, Z.; Yixiang, C.;
Chengjian, Z. Gold Catalyzed Cascade C-C And C-N Bond
Formation: Synthesis Of Polysunstituted Indolequinones And
Pyrroles.Tetrahedron Lett. 2013, 54, 5898.
33. Sarkar, S.; Bera, K.; Maiti, S.; Biswas, S.; Jana, U. Three Component
Coupling Synthesis of Diversely Substituted N-Aryl Pyrroles
Catalyzed by Iron (III) Chloride. Synth. Commun. 2013, 11, 1563.
34. Huisgen, R.; Gotthardt, H.; Bayer, H.O.; Schaefer, F.C. A New
Type of Mesoionic Aromatic Compound and its 1,3-Dipolar
Cycloaddition Reactions with Acetylen Derivatives. Angew.
Chem. Int. Ed. 1964, 76, 185.
35. Li, B. L.; Hu, H. C.; Mo, L. P.; Zhang, Z. H. Nano CoFe2O4
Supported Antimony (III) as an Efficient and Recyclable Catalyst
for One-Pot Three Component Synthesis of Multisubstituted
Pyrroles. RSC Adv. 2014, 25, 12929.
References and notes
1. Bellina, F.; Rossi, R. Synthesis and Biological Activity of Pyrrole,
Pyrroline and Pyrrolidine Derivatives with Two Aryl Groups on
Adjacent Positions. Tetrahedron 2006, 62, 7213–7256.
2. Williams, N. A.; Bowen, J. L.; Al-Jayyoussi, G.; Gumbleton, M.;
Allender, C. J.; Li, J.; Harrah, T.; Raja, A.; Joshi, H. B. An Ex
Vivo Investigation into the Transurothelial Permeability and
Bladder Wall Distribution of the Nonsteroidal Anti-
Inflammatory Ketorolac. Mol. Pharmaceutics 2014, 11, 673–682.
3. Cozzi, P.; Mongelli, N. Cytotoxics Derived from Distamycin A
and Congeners. Curr. Pharm. Des. 1998, 4, 181–201.
ꢀ
4. FuErstner, A.; Szillat, H.; Gabor, B.; Mynott, R. Platinium and
Acid-Catalyzed Enyne Metathesis Reactions: Mechanistic Studies
and Applications to the Syntheses of Streptorubin
Metacycloprodigiosin J. Am. Chem. Soc. 1998, 120, 8305.
B and
5. Pelkey, E. T. Five-Membered Ring Systems: Pyrroles and Benzo
Derivatives. Prog. Heterocycl. Chem. 2005, 17, 109.
6. Knorr, L. Synthese von Pyrrolderivaten. Ber. Dtsch. Chem. Ges.
1884, 17, 1635–1642.
7. Banik, B. K.; Samajdar, S.; Banik, I. Simple Synthesis of
Substituted Pyrroles†. J. Org. Chem. 2004, 69, 213–216.
8. Merkul, E.; Boersch, C.; Frank, W.; Mu€Ller, T. J. J. Three-
Component Synthesis of N -Boc-4-Iodopyrroles and Sequential
One-Pot Alkynylationk. Org. Lett. 2009, 11, 2269–2272.
9. Balme, G. Pyrrole Syntheses by Multicomponent Coupling
Reactions. Angew. Chem. Int. Ed. 2004, 43, 6238–6241.
10. Dhawan,
R.;
Arndtsen,
B.
A.
Palladium-Catalyzed
Multicomponent Coupling of Alkynes, Imines, and Acid
Chlorides: A Direct and Modular Approach to Pyrrole Synthesis.
J. Am. Chem. Soc. 2004, 126, 468–469.
11. Bharadwaj, A. R.; Scheidt, K. A. Catalytic Multicomponent
Synthesis of Highly Substituted Pyrroles Utilizing a One-Pot
Sila-Stetter/Paal ꢀ Knorr Strategy. Org. Lett. 2004, 6, 2465–2468.
12. Crucianelli, M.; Bizzarri, M. B.; Saladino, R. SBA-15 Anchored
Metal Containing Catalysts in the Oxidative Desulfurization
Process. Catalysts 2019, 9, 984.
13. Bardajee, G. R.; Malakooti, R.; Abtin, I.; Atashin, H. Palladium
Schiff-Base Complex Loaded SBA-15 as a Novel Nanocatalyst for
the Synthesis of 2,3-Disubstituted Quinoxalines and Pyridopyrazine
Derivatives. Micropor. Mesopor. Mater. 2013, 169, 67–74.
14. Bardajee, G. R.; Malakooti, R.; Jami, F.; Parsaei, Z.; Atashin, H.
Covalent Anchoring of copper-Schiff Base Complex into SBA-15
as a Heterogeneous Catalyst for the Synthesis of Pyridopyrazine
and Quinoxaline Derivatives. Catal. Commun. 2012, 27, 49–53.
15. Malakooti, R.; Rezanejade Bardajee, G.; Hadizadeh, S.; Atashin, H.;
Khanjari, H. An Iron Schiff Base Complex Loaded Mesoporous
Silica Nanoreactor as a Catalyst for the Synthesis of Pyrazine-Based
Heterocycles. Transition Met. Chem. 2014, 39, 47–54.
16. Malakooti, R.; Bardajee, G. R.; Mahmoudi, H.; Kakavand, N.
Zirconium Schiff-Base Complex Modified Mesoporous Silica as
an Efficient Catalyst for the Synthesis of Nitrogen Containing
Pyrazine Based Heterocycles. Catal. Lett. 2013, 143, 853–861.
17. Motamedi, R.; Bardajee, G. R.; Shakeri, S. Facile One-Pot
Synthesis of Chromeno[4,3-b] Quinoline Derivatives Catalyzed by
Cu (II)- Schiff Base/SBA-15. Heterocycl. Commun. 2014, 20, 181.
18. Fu, L.; Gribble, W. G.; A Simple Synthesis of 2,2-Bipyrroles from
Pyrrole. Tetrahedron Lett. 2008, 49, 7352. .
36. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;
Chmelka, B.; Stucky, G. D. Triblock Copolymer Syntheses of
Mesoporous Silica with Periodic 50 to 300 Angstrom Pores.
Science 1998, 279, 548–552.
19. Sobhani, S.; Bazrafshan, M.; Delluei, A. A.; Parizi, Z. P. Phospha-
Michael Addition of Diethyl Phosphite to a,b-Unsaturated
Malonates Catalyzed by Nano c-Fe2O3-Pyridine Based Catalyst
as a New Magnetically Recyclable Heterogeneous Organic Base. 37. Chisem, I. C.; Rafelt, J.; Shieh, M. T.; Chisem, J.; Clark, J. H.;
Appl. Catal. A Gen. 2013, 454, 145–151.
Jachuck, R.; Macquarrie, D.; Ramshaw, C.; Scott, K. Catalytic
Oxidation of Alkyl Aromatics Using a Novel Silica Supported
Schiff Base Complex. Chem. Commun. 1998, 18, 1949.
20. Nair, V.; Vinod, A. U.; Rajesh, C. A Novel Synthesis of 2-
Aminopyrroles Using a Three-Component Reaction. J. Org.
Chem. 2001, 66, 4427–4429.
38. Reddy, G. R.; Reddy, T. R.; Joseph, S. C.; Reddy, K. S.; Pal, M.
Iodine Catalyzed Four-Component Reaction: A Straightforward
One-Pot Synthesis of Functionalized Pyrroles under Metal-Free
Conditions. RSC Adv. 2012, 2, 3387.
21. Shen, T.; Fu, Z.; Che, F.; Dang, H.; Lin, Y.; Song, Q. An Efficient
One-Pot
Four-Component
Synthesis
of
5H-
Spiro[Benzo[7,8]Chromeno[2,3-c]Pyrazole-7,30-Indoline]-