354
B. Choi et al.
Cluster
Synlett
Chem. Eur. J. 2012, 18, 11214. (f) Best, D.; Kujawa, S.; Lam, H. W.
J. Am. Chem. Soc. 2012, 134, 18193. (g) Roy, I. D.; Burns, A. R.;
Pattison, G.; Michel, B.; Parker, A. J.; Lam, H. W. Chem. Commun.
2014, 50, 2865.
17.7 mg, 0.015 mmol), and imine 2a (68 mg, 0.33 mmol) in THF
(1.5 mL) was stirred at 0 °C for 15 min. TMDS (64 μL, 0.36
mmol) was then added dropwise over 1 min. The mixture was
stirred at 0 °C for 1 h, then at r.t. for 15 h. The reaction was
quenched carefully with SiO2, and the resulting suspension was
stirred for 15 min before being filtered through a short plug of
SiO2 using EtOAc as eluent and concentrated in vacuo. Purifica-
tion of the residue by flash column chromatography gave the
reductive coupling product.
(3) Komanduri, V.; Grant, C. D.; Krische, M. J. J. Am. Chem. Soc. 2008,
130, 12592.
(4) For reviews of copper hydride chemistry, see: (a) Lipshutz, B. H.
Synlett 2009, 509. (b) Deutsch, C.; Krause, N.; Lipshutz, B. H.
Chem. Rev. 2008, 108, 2916. (c) Rendler, S.; Oestreich, M. Angew.
Chem. Int. Ed. 2007, 46, 498. (d) Lipshutz, B. H. In Modern
Organocopper Chemistry; Wiley-VCH: Weinheim, 2002, 167–
187.
(5) For selected reviews on reductive aldol reactions, see:
(a) Krische, M. J.; Jang, H. Y. In Comprehensive Chirality; Carreira,
E. M.; Yamamoto, H., Eds.; Elsevier: Amsterdam, 2012, 100–121.
(b) Nishiyama, H.; Ito, J.-i. Chem. Commun. 2010, 203. (c) Han, S.
B.; Hassan, A.; Krische, M. J. Synthesis 2008, 2669. (d) Garner, S.
A.; Han, S. B.; Krische, M. J. In Modern Reduction Methods;
Wiley-VCH: Weinheim, 2008, 387–417. (e) Nishiyama, H.;
Shiomi, T. Top. Curr. Chem. 2007, 279, 105. (f) Ngai, M.-Y.; Kong,
J.-R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063.
(6) For intermolecular copper-catalyzed reductive aldol reactions,
see: (a) Zhao, D.; Oisaki, K.; Kanai, M.; Shibasaki, M. Tetrahedron
Lett. 2006, 47, 1403. (b) Welle, A.; Diez-Gonzalez, S.; Tinant, B.;
Nolan, S. P.; Riant, O. Org. Lett. 2006, 8, 6059. (c) Chuzel, O.;
Deschamp, J.; Chausteur, C.; Riant, O. Org. Lett. 2006, 8, 5943.
(d) Deschamp, J.; Chuzel, O.; Hannedouche, J.; Riant, O. Angew.
Chem. Int. Ed. 2006, 45, 1292. (e) Zhao, D.; Oisaki, K.; Kanai, M.;
Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 14440. (f) Li, Z.; Jiang,
L.; Li, Z.; Chen, H. Chin. J. Chem. 2013, 31, 539. (g) Li, Z.; Zhang,
Z.; Yuan, L.; Jiang, L.; Li, Z.; Li, Z. Synlett 2014, 25, 724.
(7) For examples of catalytic reductive Mannich reactions, see:
(a) Muraoka, T.; Kamiya, S.-i.; Matsuda, I.; Itoh, K. Chem.
Commun. 2002, 1284. (b) Townes, J. A.; Evans, M. A.; Queffelec,
J.; Taylor, S. J.; Morken, J. P. Org. Lett. 2002, 4, 2537.
(c) Nishiyama, H.; Ishikawa, J.; Shiomi, T. Tetrahedron Lett. 2007,
48, 7841. (d) Garner, S. A.; Krische, M. J. J. Org. Chem. 2007, 72,
5843. (e) Prieto, O.; Lam, H. W. Org. Biomol. Chem. 2008, 6, 55.
(f) Du, Y.; Xu, L.-W.; Shimizu, Y.; Oisaki, K.; Kanai, M.; Shibasaki,
M. J. Am. Chem. Soc. 2008, 130, 16146.
Data for 3a
24
Rf = 0.31 (20% EtOAc–PE); mp 128–131 °C (EtOAc–PE); [α]D
+98.6 (c 1.10, CHCl3). IR (film): 2970, 2934, 1709 (C=O), 1503,
1390, 1289, 827, 756, 700 cm–1. 1H NMR [500 MHz, (CD3)2CO]: δ
= 8.14 (d, J = 8.4 Hz, 1 H), 8.05 (d, J = 8.3 Hz, 1 H), 7.88 (d, J = 8.0
Hz, 1 H), 7.75 (ddd, J = 8.4, 6.9, 1.4 Hz, 1 H), 7.57–7.51 (m, 1 H),
7.33 (d, J = 7.3 Hz, 2 H), 7.24 (t, J = 8.0 Hz, 3 H), 7.16 (t, J = 7.0 Hz,
2 H), 5.09 (t, J = 7.7 Hz, 1 H), 3.63–3.54 (m, 1 H), 1.35 (d, J = 6.9
Hz, 3 H), 1.27 (s, 9 H). 13C NMR [125.8 MHz, (CD3)2CO]: δ =
165.1, 156.0, 148.5, 144.1, 137.0, 130.2, 129.7, 128.9, 128.6,
128.0, 127.7, 127.5, 126.8, 122.8, 78.5, 60.2, 48.1, 28.5, 19.6. ESI-
HRMS: m/z calcd for C23H27N2O2 [M + H]+: 363.2067; found:
363.2067. HPLC: Chiralcel OD-H column (i-hexane–i-PrOH,
90:10; 1.0 mL/min, 254 nm, 25 °C); tR (major) = 4.6 min, tR
(minor) = 5.9 min; 85% ee.
Data for 3f
24
Rf = 0.32 (20% EtOAc–PE); mp 142–145 °C (EtOAc–PE); [α]D
+55.0 (c 1.00, CHCl3). IR (film): 2979, 2928, 1713 (C=O), 1498,
1390, 1365, 1170, 1022, 759, 700 cm–1 1H NMR [400 MHz,
.
(CD3)2CO]: δ = 7.98 (t, J = 8.9 Hz, 2 H), 7.54–7.45 (m, 1 H), 7.45–
7.35 (m, 3 H), 7.30 (t, J = 7.4 Hz, 2 H), 7.23 (t, J = 7.5 Hz, 1 H),
6.80 (d, J = 7.5 Hz, 1 H), 5.15–4.90 (m, 1 H), 3.88–3.65 (m, 1 H),
1.37 (d, J = 6.8 Hz, 3 H), 1.28 (s, 9 H). 13C NMR [125.8 MHz,
(CD3)2CO]: δ = 174.7, 155.9, 154.1, 142.9, 135.6, 129.1, 128.0,
127.8, 126.8, 125.7, 123.4, 122.6, 78.9, 60.3, 45.1, 28.5, 19.5. ESI-
HRMS: m/z calcd for C21H25N2O2S [M + H]+: 369.1631; found:
369.1634. HPLC: Chiralpak IC column (hexane–i-PrOH, 98:2; 0.8
mL/min, 280 nm, 25 °C); tR (major) = 18.9 min, tR (minor) = 27.9
min; 88% ee.
(10) Where indicated, the relative and absolute stereochemistries of
the products were assigned by analogy with those of products
3f,g, 4d,k,q,t, which were determined by X-ray crystallography
(see Supporting Information for details). CCDC 1019731–
1019736 contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from
(8) For related enantioselective copper-catalyzed reductive
hydroamination reactions, see: (a) Miki, Y.; Hirano, K.; Satoh, T.;
Miura, M. Angew. Chem. Int. Ed. 2013, 52, 10830. (b) Zhu, S.;
Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135,
15746. (c) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett.
2014, 16, 1498.
the Cambridge
Crystallographic
Data
Centre
via
Cambridge Crystallographic Data Centre, 12, Union Road,
Cambridge CB2 1EZ, UK; fax: +44(1223)336033; e-mail:
(9) General Procedure for the Reductive Coupling of
Vinylazaarenes with Imine 2a Using Ligand L1
A solution of the appropriate vinylazaarene (0.30 mmol),
Cu(OAc)2·H2O (3.0 mg, 0.01 mmol), (S)-DTBM-SEGPHOS (L1,
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 350–354