ChemComm
Communication
We are grateful for financial support from the Natural Science
Foundation of China (2127222, 91213303, 21172205, J1030412).
Notes and references
1 (a) P. B. Arockiam, C. Bruneau and P. H. Dixneuf, Chem. Rev., 2012,
112, 5879; (b) F. Bellina and R. Rossi, Chem. Rev., 2010, 110, 1082.
2 (a) A. Mohammed and G. Nagendrappa, Tetrahedron Lett., 2003, 44,
2753; (b) V. N. Kozhevnikov, D. N. Kozhevnikov, O. V. Shabunina,
V. L. Rusinov and O. N. Chupakhin, Tetrahedron Lett., 2005, 46, 1791.
3 (a) R. L. Danheiser, R. F. Miller, R. G. Brisbois and S. Z. Park, J. Org.
Chem., 1990, 55, 1958; (b) R. L. Danheiser, R. G. Brisbois, J. J. Kowalczyk
and R. F. Miller, J. Am. Chem. Soc., 1990, 112, 3093.
Scheme 3 Proposed mechanism for the reaction.
4 (a) J. C. Lee, S. Kim and W. C. Shin, Synth. Commun., 2000, 30, 4271;
(b) M. V. Vita and J. Waser, Org. Lett., 2013, 15, 3246; (c) D. Kumar,
S. Sundaree and V. S. Rao, Synth. Commun., 2006, 36, 1893.
5 (a) J. Zhuang, C. Q. Wang, F. Xie and W. B. Zhang, Tetrahedron, 2009,
65, 9797; (b) A. Raghunadh, S. B. Meruva, N. A. Kumar, G. S. Kumar,
L. V. Rao and U. K. S. Kumar, Synthesis, 2012, 44, 283.
under standard conditions without electrolysis, and the desired
product was generated in 62% yield (Scheme 2d). Moreover, the
desired product could be obtained in 80% under a nitrogen
atmosphere (Scheme 2g) and in 37% under an oxygen atmosphere
(Scheme 2h). This implied that 2-oxo-2-phenyl-acetaldehyde was
not the intermediate. Furthermore, 2,2-diiodo-1-phenylethanone
was also employed as the reaction substrate to replace 2-oxo-
2-phenylacetaldehyde under the same conditions, the desired
product was formed in 84% yield (Scheme 2e). These results
revealed that 2,2-diiodo-1-phenylethanone should be a key
intermediate of the reaction. In addition, when reaction of
acetophenone with 2a was carried out in the presence of iodine,
we failed to get the desired product (Scheme 2f). Finally, the
reaction was completely suppressed in the presence of 2,2,6,6-
tetramethyl-1-piperidinyloxy (TEMPO, 2 equiv.) (Scheme 2i),
which suggested that the reaction probably involved a radical
process.
According to the experimental results mentioned above, we
proposed a plausible mechanism (Scheme 3). First, the iodine
ion is oxidized into the iodine radical on the surface of the
anode, and then catches a hydrogen atom from acetophenone
(1a) to give the radical 4. Then the radical 4 combines with the
iodine radical to form 2-iodo-1-phenylethanone (5), which
obtains an electron to give the radical 6. The radical 6 is unstable
and can easily integrate with the iodine radical to generate 2,2-
diiodo-1-phenylethanone (7), which is then attacked by dimethyl
malonate (2a) to produce the desired product 3aa under alkaline
conditions. Simultaneously, MeOH is reduced to methoxide
anion with the release of hydrogen gas in the cathode.
Decarboxylation of the bis(b-dimethoxycarbonyl) derivative
3ba was promoted by heating in the presence of hydro-
bromic acid, affording 3-benzoylpropanoic acid 8 in 71% yield
(eqn (1)).
6 (a) X. B. Zhang and L. Wang, Green Chem., 2012, 14, 2141; (b) M. Lamani
and K. R. Prabhu, Chem. – Eur. J., 2012, 18, 14638; (c) J. Zhang, Y. Wei,
S. X. Lin, F. S. Liang and P. J. Liu, Org. Biomol. Chem., 2012, 10, 9237.
7 (a) A. Bugarin, K. D. Jones and B. T. Connell, Chem. Commun., 2010,
46, 1715; (b) K. Xu, Y. Fang, Z. C. Yan, Z. G. Zha and Z. Y. Wang,
Org. Lett., 2013, 15, 2148; (c) M. Gao, Y. Yang, Y. D. Wu, C. Deng,
L. P. Cao, X. G. Meng and A.-X. Wu, Org. Lett., 2010, 12, 1856.
8 (a) J. C. Lee, C. Y. Park and Y. S. Choi, Synth. Commun., 1997, 27,
4079; (b) C. Q. Chen, X. H. Feng, G. Z. Zhang, Q. Zhen and G. S.
Huang, Synthesis, 2008, 20, 3205; (c) R. M. Moriarty, B. A. Berglund
and R. Penmasta, Tetrahedron Lett., 1992, 33, 6065.
9 (a) D. Crich and Y. K. Zou, J. Org. Chem., 2005, 70, 3309; (b) J. Zhuang,
C. Q. Wang, F. Xie and W. B. Zhang, Tetrahedron, 2009, 65, 9797.
10 a-iodization: (a) G. D. Yin, B. H. Zhou, X. G. Meng, A. X. Wu and Y. J. Pan,
Org. Lett., 2006, 8, 2245; (b) G. Stavber, J. Iskra, M. Zupan and S. Stavber,
Adv. Synth. Catal., 2008, 350, 2921; (c) G. Stavber, J. Iskra, M. Zupana and
S. Stavber, Green Chem., 2009, 11, 1262; (d) Y. P. Zhu, M. C. Liu, F. C. Jia,
J. J. Yuan, Q. H. Gao, M. Lian and A. X. Wu, Org. Lett., 2012, 14, 3392;
a-bromination: (e) I. Pravst, M. Zupan and S. Stavber, Tetrahedron Lett.,
ˇ
2006, 47, 4707; ( f ) A. Podgorsek, S. Stavber, M. Zupan and J. Iskra, Green
Chem., 2007, 9, 1212; (g) S. Adimurthy, S. Ghosh, P. U. Patoliya,
G. Ramachandraiah, M. Agrawal, M. R. Gandhi, S. C. Upadhyay, P. K.
Ghosh and B. C. Ranu, Green Chem., 2008, 10, 232; a-chlorination:
(h) Z. Z. Chen, B. Zhou, H. H. Cai, W. Zhu and X. Z. Zou, Green Chem.,
2009, 11, 275; (i) G. K. S. Prakash, R. Ismail, J. Garcia, C. Panja, G. Rasul,
T. Mathew and G. A. Olah, Tetrahedron Lett., 2011, 52, 1217; ( j) J. C. Lee
and H. J. Park, Synth. Commun., 2006, 36, 777; (k) C. Chiappe, E. Leandri
and M. Tebano, Green Chem., 2006, 8, 742; a-fluorination: (l) W. M. Peng
and J. M. Shreeve, J. Org. Chem., 2005, 70, 5760; (m) W. J. Middleton and
E. M. Bingham, J. Am. Chem. Soc., 1980, 102, 4845; (n) T. D. Haro and
C. Nevado, Adv. Synth. Catal., 2010, 352, 2767; (o) G. Stavber, M. Zupan
and S. Stavber, Synlett, 2009, 589.
11 W. J. Thompson, D. D. Thompson, P. S. Anderson and G. A. Rodan,
Eur. Pat. Appl., 30, EP341961A2, 1989.
12 (a) A. Leonardi, D. Barlocco, F. Montesano, G. Cignarella, G. Motta,
R. Testa, E. Poggesi, M. Seeber, P. G. De Benedetti and F. Fanelli, J. Med.
Chem., 2004, 47, 1900; (b) A. Guzman and M. Romero, J. Org. Chem., 1990,
55, 5793; (c) T. Boehm and R. Themlitz, Arch. Pharm., 1934, 272, 406.
13 (a) H. Lund and O. Hammerich, Organic Electrochemistry, Marcel Dekker,
New York, 4th edn, 2001; (b) J. Grimshaw, Electrochemical Reactions and
Mechanisms in Organic Chemistry, Elsevier, Amsterdam, 2000.
14 L. Zhang, H. Chen, Z. G. Zha and Z. Y. Wang, Chem. Commun., 2012,
48, 6574.
(1)
15 L. Zhang, J. H. Su, S. J. Wang, C. F. Wan, Z. G. Zha, J. F. Du and
Z. Y. Wang, Chem. Commun., 2011, 47, 5488.
16 L. Zhang, Z. G. Zha, Z. L. Zhang, Y. F. Li and Z. Y. Wang, Chem.
Commun., 2010, 46, 7196.
17 L. Meng, J. H. Su, Z. G. Zha, L. Zhang, Z. L. Zhang and Z. Y. Wang,
Chem. – Eur. J., 2013, 19, 5542.
18 Z. L. Zhang, J. H. Su, Z. G. Zha and Z. Y. Wang, Chem. – Eur. J., 2013,
19, 17711.
In summary, we have developed a new method to realize sp3
C–H difunctionalization of arylketones under mild conditions.
A series of multisubstituted arylketones were synthesized effici-
ently by virtue of environmentally friendly electrochemistry.
Further studies on C–H functionalization via the electrochemical
method are underway in our lab.
19 Z. L. Zhang, J. H. Su, Z. G. Zha and Z. Y. Wang, Chem. Commun.,
2013, 49, 8982.
5036 | Chem. Commun., 2014, 50, 5034--5036
This journal is ©The Royal Society of Chemistry 2014