Inorganic Chemistry p. 4899 - 4912 (2014)
Update date:2022-08-05
Topics:
Chakraborty, Biswarup
Bhunya, Sourav
Paul, Ankan
Paine, Tapan Kanti
The isolation and characterization of a series of iron(II)-2-aminophenolate complexes [(6-Me3-TPA)FeII(X)]+ (X = 2-amino-4-nitrophenolate (4-NO2-HAP), 1; X = 2-aminophenolate (2-HAP), 2; X = 2-amino-3-methylphenolate (3-Me-HAP), 3; X = 2-amino-4-methylphenolate (4-Me-HAP), 4; X = 2-amino-5-methylphenolate (5-Me-HAP), 5; X = 2-amino-4-tert-butylphenolate (4-tBu-HAP), 6 and X = 2-amino-4,6-di-tert-butylphenolate (4,6-di-tBu-HAP), 7) and an iron(III)-2-amidophenolate complex [(6-Me3-TPA)FeIII(4,6- di-tBu-AP)]+ (7Ox) supported by a tripodal nitrogen ligand (6-Me3-TPA = tris(6-methyl-2-pyridylmethyl)amine) are reported. Substituted 2-aminophenols were used to prepare the biomimetic iron(II) complexes to understand the effect of electronic and structural properties of aminophenolate rings on the dioxygen reactivity and on the selectivity of C-C bond cleavage reactions. Crystal structures of the cationic parts of 5·ClO4 and 7·BPh4 show six-coordinate iron(II) centers ligated by a neutral tetradentate ligand and a monoanionic 2-aminophenolate in a bidentate fashion. While 1·BPh 4 does not react with oxygen, other complexes undergo oxidative transformation in the presence of dioxygen. The reaction of 2·ClO 4 with dioxygen affords 2-amino-3H-phenoxazin-3-one, an auto-oxidation product of 2-aminophenol, whereas complexes 3·BPh 4, 4·BPh4, 5·ClO4 and 6·ClO4 react with O2 to exhibit C-C bond cleavage of the bound aminophenolates. Complexes 7·ClO4 and 7 Ox·BPh4 produce a mixture of 4,6-di-tert-butyl-2H- pyran-2-imine and 4,6-di-tert-butyl-2-picolinic acid. Labeling experiments with 18O2 show the incorporation of one oxygen atom from dioxygen into the cleavage products. The reactivity (and stability) of the intermediate, which directs the course of aromatic ring cleavage reaction, is found to be dependent on the nature of ring substituent. The presence of two tert-butyl groups on the aminophenolate ring in 7·ClO4 makes the complex slow to cleave the C-C bond of 4,6-di-tBu-HAP, whereas 4·BPh4 containing 4-Me-HAP displays fastest reactivity. Density functional theory calculations were conducted on [(6-Me 3-TPA)FeIII(4-tBu-AP)]+ (6 Ox) to gain a mechanistic insight into the regioselective C-C bond cleavage reaction. On the basis of the experimental and computational studies, an iron(II)-2-iminobenzosemiquinonate intermediate is proposed to react with dioxygen resulting in the oxidative C-C bond cleavage of the coordinated 2-aminophenolates.
View MoreBeijing Zhongshuo Pharmaceutical T & D Co.,Ltd
Contact:0086-10-64430626
Address:ea No 16, HEPINGLI,DONGCHENG DISTRICT,BEIJING,P.R.CHINA.
ABA Chemicals (Shanghai) Limited
Contact:021- 5115 9199-232
Address:Suite 18D, #201 Ningxia Road,
Guangxi Nanning Guangtai Agriculture Chemical Co.,Ltd
Contact:+86-771-2311266
Address:Room703,Building12, Software Park Phase II,NO.68,Keyuan Road,Nanning City,Guangxi,China
Anhui New Star Pharmaceutical Development Co., Ltd
Contact:013956922763
Address:Floor 3, F9A, F Workshop, No.110 Kexue Road, High-Tech Development Zone, Hefei, Anhui ,China
Shanghai Hanshare Industry Co.,Ltd.
Contact:86 21 20960688
Address:RM902-903,Building E, Wanda Plaza,No.26,Zhoukang Road, Pudong District, Shanghai, China
Doi:10.1007/BF00908943
(1968)Doi:10.1021/om9609776
(1997)Doi:10.1246/bcsj.40.1488
(1967)Doi:10.1021/jm00310a022
(1968)Doi:10.1021/jm00309a001
(1968)Doi:10.1021/jf60158a037
(1968)