Communications
Organometallics, Vol. 16, No. 3, 1997 293
The reactivity of Ru(SiMe3)(CCSiMe3)(CO)L2 observed
to date shows ready reductive elimination with re-
formation of the SisC bond. Slow reaction with CO over
12 h produces Ru(CO)3L2 and liberates alkyne, while
the complex reacts (70 °C, 12 h) in benzene under argon
to liberate alkyne and produce (η6-C6H6)Ru(CO)L and
equimolar L.10 If excess fluorobenzene is heated (70 °C,
12 h) with Ru(SiMe3)(CCSiMe3)(CO)L2 in benzene,
oxidative addition occurs exclusively to the ortho CsH
bond of C6H5F. Reaction of Ru(SiMe3)(CCSiMe3)(CO)-
L2 with 1 atm of H2 (excess) in benzene at 25 °C gives
Ru(H)2(H2)(CO)L2, which hydrogenates the liberated
Me3SiCCSiMe3 to cis- and trans-(Me3Si)HCdCH(SiMe3).
Reaction with equimolar Me3SiCtCH (70 °C, 20 min)
gives only partial consumption of Ru(SiMe3)(CCSiMe3)-
(CO)L2, with production of a trace of RuH(CCSiMe3)-
(CO)L2 along with the major products Ru(trans-CHdCH-
SiMe3)(CCSiMe3)(CO)L2 and Ru(CCSiMe3)2(CO)L2. The
last two are known reaction products of the former with
Me3SiCCH.12
F igu r e 1. ORTEP drawing of the non-hydrogen atoms of
Ru(SiMe3)(CCSiMe3)(CO)(PtBu2Me)2. Selected bond dis-
tances (Å) and angles (deg): Ru-C(26) ) 2.048(6), Ru-
C(32) ) 1.852(7), C(26)-C(27) ) 1.216(8); C(26)-Ru-C(32)
) 171.3(3), C(32)-Ru-Si ) 91.2(2), Ru-C(26)-C(27) )
176.0(6), Ru-C(32)-O(33) ) 174.0(6).
The majority of literature reports on transition-metal/
silicon chemistry involve migration of silicon from the
metal to carbon.13 Cleavage of SisC bonds with coor-
dination of SiR3 has been mainly limited to reports
which fail to account for the carbon fragment.14 How-
ever, an especially important exception is the oxidative
addition15 of both acetylide substituents of Me2Si(C2Ph)2
to L2Pt(C2H4)2 to give A. Two examples are known of
it shows no unusual Ru-Si-C angles (range 115.2(3)-
116.8(3)°). The most unusual feature of the structure
is the acute Si-Ru-C(CSiMe3) angle, 80.2(2)°. Al-
though the Si-C(CSiMe3) distance, 2.87 Å, is certainly
nonbonding (the C3 axis of the SiMe3 group also points
directly towards Ru), no comparably acute angle has
been observed in square-pyramidal d6 species.8 There
are no agostic interactions with ruthenium; the closest
t
hydrogen (from a Bu methyl) is 2.77 Å from the metal.
t
One Bu group from each phosphine projects below the
base of the square pyramid, and one methyl of the SiMe3
group eclipses the Ru-C-O bond. Consistent with the
presence of the bulky SiMe3 ligand, P-Ru-P is
uncharacteristically small (160.73(6)°).
SisC(sp3) cleavage under mild conditions.16,17 The
reactions reported here should allow for a more detailed
determination of whether SisC(sp) oxidative addition
always involves an intermediate η2-alkyne complex and
whether it responds to varying electron donation and
withdrawal in RC6H4CCsSiMe2(aryl) substrates, as
would be expected for an “oxidative” process.
There is supporting evidence that the SisC bond
cleavage is a redox process, requiring zerovalent Ru.
Some Ru(SiMe3)(CCSiMe3)(CO)L2 is formed by Mg
reduction of RuCl2(CO)L2 in THF in the presence of Me3-
SiCCSiMe3.9 Electron density at Ru is also implicated
as an important component of this reaction because
Ru(CO)2L2, with one more electron-withdrawing carbo-
nyl ligand than “Ru(CO)L2”, fails10 to react at all (not
even adduct formation) with Me3SiCCSiMe3 (although
it does oxidatively add the HsC bond of HsCCPh).
Ack n ow led gm en t. This work was supported by the
National Science Foundation. We also thank J ohnson
Matthey/Aesar for material support.
Su p p or tin g In for m a tion Ava ila ble: Text giving experi-
mental details for the reactions of Ru(SiMe3)(CCSiMe3)(CO)-
L2 and tables giving full crystallographic data, positional
parameters, and bond lengths and bond angles for Ru(SiMe3)-
(CCSiMe3)(CO)L2 (7 pages). Ordering information is given on
any current masthead page.
tBuCtCSiMe3
Ru(SiMe3)(CtCtBu)(CO)L2.11
also
reacts
similarly,
giving
(7) Heyn, R. H.; Huffman, J . C.; Caulton, K. G. New J . Chem. 1993,
17, 797-803.
OM9609776
(8) The H-Ir-C(ipso) angle is 78° in IrH(C6H5)Cl(PCy3)2: Werner,
H.; Hohn, A.; Dziallas, M. Angew. Chem., Int. Ed. Engl. 1986, 25, 1090.
(9) This reaction, which might proceed through “Ru(CO)L2”, pro-
duces numerous other phosphorus-containing products, perhaps be-
cause the reduction in fact proceeds through a Ru(I) species.
(10) Ogasawara, M.; Macgregor, S. A.; Streib, W. E.; Folting, K.;
Eisenstein, O.; Caulton, K. G. J . Am. Chem. Soc. 1996, 118, 10189.
(11) Spectroscopic data of Ru(SiMe3)(CCtBu)(CO)L2. Anal. Calcd for
C28H60OP2RuSi: C, 55.57; H, 10.01. Found: C, 55.12; H, 9.74. 1H NMR
(C6D6, 20 °C): 1.61 (vt, N ) 6 Hz, 6H, PCH3), 1.38 (s, 9H, CC(CH3)3),
1.26 (vt, N ) 12.6 Hz, 18H, PC(CH3)3), 1.20 (vt, N ) 12.6 Hz, 18H,
P(CCH3)3), 0.74 (s, Si(CH3)3) ppm. 31P{1H} NMR (C6D6, 20 °C): 51.65
ppm. 13C{1H} NMR (C6D6, 20 °C): 203.6 (t, J PC ) 13 Hz, CO), 126.5
(s, CtBu), 126.0 (t, J PC ) 17 Hz, RusCCtBu), 35.7 (vt, N ) 16.2 Hz,
PsC(CH3)3), 35.4 (vt, N ) 16.2 Hz, PC(CH3)3), 32.2 (s, CC(CH3)3), 31.9
(s, PC(CH3)3), 30.4 (s, PC(CH3)3), 13.9 (s, Si(CH3)3), 7.7 (vt, N ) 9.5
(12) Pedersen, A.; Tilset, M.; Folting, K.; Caulton, K. G. Organo-
metallics 1995, 14, 875.
(13) (a) Maddock, S. M.; Rickard, C. E. F.; Roper, W. R.; Wright, L.
J . Organometallics 1996, 15, 1793. (b) Braunstein, P.; Knorr, M. J .
Organomet. Chem. 1995, 500, 21. (c) Hikida, T.; Onitsuka, K.; Sono-
gashira, K.; Hayashi, T.; Ozawa, F. Chem. Lett. 1995, 985.
(14) Takao, T.; Yoshida, S.; Suzuki, H.; Tanaka, M. Organometallics
1995, 14, 3855.
(15) Cirrano, M.; Howard, J . A. K.; Spencer, J . L.; Stone, F. G. A.;
Wadepohl, H. J . Chem. Soc., Dalton Trans 1979, 1749.
(16) Hofmann, P.; Heiss, H.; Neiteler, P.; Mu¨ller, G.; Lachmann, J .
Angew. Chem., Int. Ed. Engl. 1990, 29, 880.
(17) (a) Lin, W.; Wilson, S. R.; Girolami, G. Organometallics 1994,
13, 2309. (b) Hua, R.; Akita, M.; Moro-oka, Y. J . Chem. Soc., Chem.
Commun. 1996, 541.
Hz, PCH3) ppm. IR (C6D6): ν(CO) 1896, ν(CC) 2150 cm-1
.