ACS Catalysis
Page 6 of 7
Umpolung Allylation of α-Imino Ester Enabled Synthesis
of a-Amino Boronate Esters via Organocatalytic
Pinacolboryl Addition to Tosylaldimines. Chem. Commun.
2012, 48, 3769-3771. (d) Hong, K.; Morken, J. P. Catalytic
Enantioselective One-pot Aminoborylation of Aldehydes: A
Strategy for Construction of Nonracemic α-Amino
Boronates. J. Am. Chem. Soc. 2013, 135, 9252-9254. (e)
Zhang, S.-S.; Zhao, Y.-S.; Tian, P.; Lin, G.-Q. Chiral
NHC/Cu(I)-Catalyzed Asymmetric Hydroboration of
Aldimines: Enantioselective Synthesis of α-Amido Boronic
Esters. Synlett. 2013, 24, 437-442. (f) Wen, K.; Wang, H.;
Chen, J.; Zhang, H.; Cui, X.; Wei, C.; Fan, E.; Sun, Z.
of α-Quaternary Amino Acid Derivatives Bearing Two
Vicinal Stereocenters. Chem. Commun. 2017, 53, 1985-
1988. (c) Zhan, M.; Pu, X.; He, B.; Niu, D.; Zhang, X.
Intramolecular Umpolung Allylation of Imines. Org. Lett.
2018, 20, 5857-5860. (d) Burger, E. C.; Tunge, J. A.
Synthesis of Homoallylic Amines via the Palladium-
Catalyzed Decarboxylative Coupling of Amino Acid
Derivatives. J. Am. Chem. Soc. 2006, 128, 10002-10003.
(e) Yeagley, A. A.; Chruma, J. J. C−C Bond-Forming
Reactions via Pd-Mediated Decarboxylative α-Imino Anion
Generation. Org. Lett. 2007, 9, 2879-2882. (f) Li, Z.;
Jiang, Y.-Y.; Yeagley, A. A.; Bour, J. P.; Liu, L.; Chruma, J.
J.; Fu, Y. Mechanism of the Pd‐catalyzed Decarboxylative
Allylation of α‐Imino Esters: Decarboxylation via Free
Carboxylate Ion. Chem. Eur. J. 2012, 18, 14527-14538. (g)
Qian, X.; Ji, P.; He, C.; Zirimwabagabo, J.-O.; Archibald,
M. M.; Yeagley, A. A.; Chruma, J. J. Palladium-Catalyzed
Decarboxylative Generation and Asymmetric Allylation of
α-Imino Anions. Org. Lett. 2014, 16, 5228-5231.
1
2
3
4
5
6
7
8
Improving
Carbene-Copper-Catalyzed
Asymmetric
9
Synthesis of α-Aminoboronic Esters Using Benzimidazole-
Based Precursors. J. Org. Chem. 2013, 78, 3405-3409. (g)
Wang, D.; Cao, P.; Wang, B.; Jia, T.; Lou, Y.; Wang, M.;
Liao, J. Copper(I)-Catalyzed Asymmetric Pinacolboryl
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Addition of N-Boc-imines Using
a Chiral Sulfoxide-
Phosphine Ligand. Org. Lett. 2015, 17, 2420-2423.
(12) For reviews, see: (a) Brook, A. G. Molecular
Rearrangements of Organosilicon Compounds. Acc. Chem.
Res. 1974, 7, 77-84. (b) Moser, W. H. The Brook
Rearrangement in Tandem Bond Formation Strategies.
Tetrahedron 2001, 57, 2065-2084. For examples of aza-
Brook rearrangement, see: (c) Honda, T.; Mori, M. An Aza-
Brook Rearrangement of (α-Silylallyl)amine. J. Org. Chem.
1996, 61, 1196-1197. (d) Yagi, K.; Tsuritani, T.; Takami, K.;
(7) (a) Patra, A.; Mukherjee, S.; Das, T. K.; Jain, S.; Gonnade,
R. G.; Biju, A. T. N-Heterocyclic-Carbene-Catalyzed
Umpolung of Imines. Angew. Chem. Int. Ed. 2017, 56,
2730-2734. (b) Fernando, J. E. M.; Nakano, Y.; Zhang, C.;
Lupton, D. W. Enantioselective N-Heterocyclic Carbene
Catalysis Exploiting Imine Umpolung. Angew. Chem. Int.
Ed. 2019, 58, 4007-4011. (c) Patra, A.; Gelat, F.;
Pannecoucke, X.; Poisson, T.; Besset, T.; Biju, A. T.
Synthesis of 4-Difluoromethylquinolines by NHC-
Catalyzed Umpolung of Imines. Org. Lett. 2018, 20, 1086-
1089.
(8) (a) Qi. L.; Chen, Y. Polarity-Reversed Allylations of
Aldehydes, Ketones, and Imines Enabled by Hantzsch
Ester in Photoredox Catalysis. Angew. Chem. Int. Ed.
2016, 55, 13312-13315. (b) Lee, K. N.; Lei, Z.; Ngai, M.-Y.
β-Selective Reductive Coupling of Alkenylpyridines with
Shinokubo,
H.;
Oshima,
K.
Reaction
of
Silyldihalomethyllithiums with Nitriles: Formation of α-
Keto Acylsilanes via Azirines and 1,3-Rearrangement of
Silyl Group from C to N. J. Am. Chem. Soc. 2004, 126,
8618-8619. (e) Huang, Z.-A.; Tang, F.; Xu, Y.-J.; Lu, C.-D.
[1,4]-Aza-Brook Rearrangement for Efficient Formation of
Benzynes and Their Cycloaddition. Synlett. 2015, 26, 891-
896. (f) Lin, C.-Y.; Sun, Z.; Xu, Y.-J.; Lu, C.-D. Synthesis of
Aryl anti-Vicinal Diamines via Aza-Brook Rearrangement-
Initiated Nucleophilic Addition of α-Silylamines to Imines.
J. Org. Chem. 2015, 80, 3714-3722. (g) Huang, Z.-A.; Liu,
H.; Lu, C.-D.; Xu, Y.-J. Stereoselective Synthesis of
Enantioenriched 2-Chloro-2-aroylaziridines by Cascade
Reaction between Aryl Nitriles, Silyldichloromethanes, and
tert-Butanesulfinylimines. Org. Lett. 2015, 17, 4042-4045.
For a report on bora-Brook rearrangement, see: (h) Kisu,
H.; Sakaino, H.; Ito, F.; Yamashita, M.; Nozaki, K. A
Qualitative Analysis of a “Bora-Brook Rearrangement”:
The Ambident Reactivity of Boryl-Substituted Alkoxide
Including the Carbon-to-Oxygen Migration of a Boryl
Group. J. Am. Chem. Soc. 2016, 138, 3548-3552.
Aldehydes
and
Imines
via
Synergistic
Lewis
Acid/Photoredox Catalysis. J. Am. Chem. Soc. 2017, 139,
5003-5006.
(9) (a) Wang, R.; Ma, M.; Gong, X.; Panetti, G. B.; Fan, X.;
Walsh, P. J. Visible-Light-Mediated Umpolung Reactivity
of Imines: Ketimine Reductions with Cy2NMe and Water.
Org. Lett. 2018, 20, 2433-2436. (b) Wang, R.; Ma, M.;
Gong, X.; B.; Fan, X.; Walsh, P. J. Reductive Cross-
Coupling of Aldehydes and Imines Mediated by Visible
Light Photoredox Catalysis. Org. Lett. 2019, 21, 27-31. (c)
Fan, X.; Gong, X.; Ma, M.; Wang, R.; Walsh, P. J. Visible
Light-Promoted CO2 Fixation with Imines to Synthesize
Diaryl α-Amino Acids. Nat. Commun. 2018, 9, 4936. (d)
Ju, T.; Fu, Q.; Ye, J.-H.; Zhang, Z.; Liao, L.-L.; Yan, S.-S.;
Tian, X.-Y.; Luo, S.-P.; Li, J.; Yu, D.-G. Selective and
Catalytic Hydrocarboxylation of Enamides and Imines
with CO2 to Generate α,α‐Disubstituted α‐Amino Acids.
Angew. Chem. Int. Ed. 2018, 57, 13897-13901.
(10) (a) Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. Catalytic
Boracarboxylation of Alkynes with Diborane and Carbon
Dioxide by an N-Heterocyclic Carbene Copper Catalyst. J.
Am. Chem. Soc. 2012, 134, 14314-14317. (b) Carry, B.;
Zhang, L.; Nishiura, M.; Hou, Z. Synthesis of Lithium
Boracarbonate Ion Pairs by Copper-Catalyzed Multi-
Component Coupling of Carbon Dioxide, Diboron, and
Aldehydes. Angew. Chem. Int. Ed. 2016, 55, 6257-6260.
(11) Selected examples of Cu-catalyzed borylation of imines: (a)
Beenen, M. A.; An, C.; Ellman, J. A. Asymmetric Copper-
Catalyzed Synthesis of α-Amino Boronate Esters from N-
tert-Butanesulfinyl Aldimines. J. Am. Chem. Soc. 2008,
130, 6910-6911. (b) Buesking, A. W.; Bacauanu, V.; Cai, I.;
Ellman, J. A. Asymmetric Synthesis of Protected a-Amino
Boronic Acid Derivatives with an Air- and Moisture-Stable
Cu(II) Catalyst. J. Org. Chem. 2014, 79, 3671-3677. (c)
Solé, C.; Gulyás, H.; Fernández, E. Asymmetric Synthesis
(13) Neeve, E. C.; Geier, S. J.; Mkhalid, I. A. I.; Westcott, S. A.;
Marder, T. B. Diboron(4) Compounds: From Structural
Curiosity to Synthetic Workhorse. Chem. Rev. 2016, 116,
9091-9161.
(14) (a) Laitar, D. S.; Miller, P.; Sadighi, J. P. Efficient
Homogeneous Catalysis in the Reduction of CO2 to CO. J.
Am. Chem. Soc. 2005, 127, 17196-17197. (b) Zhao, H.; Lin,
Z.; Marder, T. B. Density Functional Theory Studies on the
Mechanism of the Reduction of CO2 to CO Catalyzed by
Copper(I) Boryl Complexes. J. Am. Chem. Soc. 2006, 128,
15637-15643. (c) Dang, L.; Lin, Z.; Marder, T. B. Boryl
Ligands and Their Roles in Metal-Catalysed Borylation
Reactions. Chem. Commun. 2009, 3987-3995.
(15) When CuCl was used as a catalyst in the reaction of 1e, a
lower yield of 2e (41% NMR yield) was observed.
Therefore, the substrate scope was investigated by using
[(SIMes)CuCl] as the catalyst.
(16) Under the current conditions (80 C), only trace amount of
the desired products were detected in the reactions of 1a
with benzyl bromide, ethyl bromoacetate, prenyl bromide,
or crotyl bromide. No significant improvement was
observed when the reactions were carried out at 100 C.
ACS Paragon Plus Environment