Edge Article
Chemical Science
refractive indices are the same. Therefore, under our experi- 13 C. Fan, W. Wu, J. J. Chruma, J. Zhao and C. Yang, J. Am.
mental conditions, the upconverted emission quantum effi- Chem. Soc., 2016, 138, 15405–15412.
ciency FUC could be calculated using the equation. For the UC 14 C. Ye, L. Zhou, X. Wang and Z. Liang, Phys. Chem. Chem.
system, the weight ratio of S1/SLC1717 was 10 wt%, the molar Phys., 2016, 18, 10818–10835.
ratio of PtOEP/S1 was 1%. For the standard system, the 15 X. Cui, J. Zhao, Y. Zhou, J. Ma and Y. Zhao, J. Am. Chem. Soc.,
concentration of Rhodamine B was the same as the concen- 2014, 136, 9256–9259.
tration of PtOEP. The UC system was tested from 400 nm to 16 K. Borjesson, P. Rudquist, V. Gray and K. Moth-Poulsen, Nat.
530 nm, and the standard system was tested from 540 nm to Commun., 2016, 7, 12689.
750 nm. The UC quantum yield was determined relative to 17 Z. Jiang, M. Xu, F. Li and Y. Yu, J. Am. Chem. Soc., 2013, 135,
a standard, Rhodamine B in SLC1717 (Fstd ¼ 0.441) under 16446–16453.
532 nm excitation. The result of upconverted emission 18 K. Mase, Y. Sasaki, Y. Sagara, N. Tamaoki, C. Weder, N. Yanai
quantum efficiency was the mean value for parallel testing three
times.
and N. Kimizuka, Angew. Chem., Int. Ed., 2018, 57, 2806–
2810.
19 J.-H. Kang, S.-H. Kim, A. Fernandez-Nieves and
E. Reichmanis, J. Am. Chem. Soc., 2017, 139, 5708–5711.
20 L. Shi, L. Zhu, J. Guo, L. Zhang, Y. Shi, Y. Zhang, K. Hou,
Y. Zheng, Y. Zhu, J. Lv, S. Liu and Z. Tang, Angew. Chem.,
Int. Ed., 2017, 56, 15397–15401.
Conflicts of interest
There are no conicts to declare.
21 H. Nishimura, K. Tanaka, Y. Morisaki, Y. Chujo,
A. Wakamiya and Y. Murata, J. Org. Chem., 2017, 82, 5242–
5249.
22 R. Aoki, R. Toyoda, J. F. Koegel, R. Sakamoto, J. Kumar,
Y. Kitagawa, K. Harano, T. Kawai and H. Nishihara, J. Am.
Chem. Soc., 2017, 139, 16024–16027.
23 T. Goto, Y. Okazaki, M. Ueki, Y. Kuwahara, M. Takafuji,
R. Oda and H. Ihara, Angew. Chem., Int. Ed., 2017, 56,
2989–2993.
24 S. Huo, P. Duan, T. Jiao, Q. Peng and M. Liu, Angew. Chem.,
Int. Ed., 2017, 56, 12174–12178.
Acknowledgements
This work was supported by the Ministry of Science and Tech-
nology of China (2016YFA0203400, 2017YFA0206600), National
Natural Science Foundation of China (51673050, 51773021).
P. D. is grateful for the support of “New Hundred-Talent
Program” research fund from the Chinese Academy of
Sciences. Y. W. is grateful for the support of the Talent Project of
Jiangsu Specially-Appointed Professor.
25 Y. Shi, P. Duan, S. Huo, Y. Li and M. Liu, Adv. Mater., 2018,
30, 1705011.
Notes and references
1 S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda and 26 E. M. Sanchez-Carnerero, F. Moreno, B. L. Maroto,
G. Wegner, Phys. Rev. Lett., 2006, 97, 143903.
2 T. N. Singh-Rachford and F. N. Castellano, Coord. Chem. Rev.,
2010, 254, 2560–2573.
A. R. Agarrabeitia, M. J. Ortiz, B. G. Vo, G. Muller and S. de
la Moya, J. Am. Chem. Soc., 2014, 136, 3346–3349.
27 T. Kimoto, N. Tajima, M. Fujiki and Y. Imai, Chem.–Asian J.,
2012, 7, 2836–2841.
3 J. Zhao, S. Ji and H. Guo, RSC Adv., 2011, 1, 937–950.
4 A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione and 28 J. Han, J. You, X. Li, P. Duan and M. Liu, Adv. Mater., 2017,
F. Meinardi, Phys. Chem. Chem. Phys., 2012, 14, 4322–4332. 29, 1606503.
5 Y. C. Simon and C. Weder, J. Mater. Chem., 2012, 22, 20817– 29 J. Zhang, W. Feng, H. Zhang, Z. Wang, H. A. Calcaterra,
20830.
B. Yeom, P. A. Hu and N. A. Kotov, Nat. Commun., 2016, 7,
6 S. H. C. Askes, A. Bahreman and S. Bonnet, Angew. Chem., Int.
Ed., 2014, 53, 1029–1033.
7 Y. Y. Cheng, B. Fueckel, R. W. MacQueen, T. Khoury,
10701.
30 R. Carr, N. H. Evans and D. Parker, Chem. Soc. Rev., 2012, 41,
7673–7686.
R. G. C. R. Clady, T. F. Schulze, N. J. Ekins-Daukes, 31 F. Song, G. Wei, X. Jiang, F. Li, C. Zhu and Y. Cheng, Chem.
M. J. Crossley, B. Stannowski, K. Lips and T. W. Schmidt,
Energy Environ. Sci., 2012, 5, 6953–6959.
8 Z. Huang and M. L. Tang, J. Am. Chem. Soc., 2017, 139, 9412–
9418.
Commun., 2013, 49, 5772–5774.
32 H. Zheng, W. Li, W. Li, X. Wang, Z. Tang, S. X.-A. Zhang and
Y. Xu, Adv. Mater., 2018, 30, 1705948.
33 M. Schadt, Annu. Rev. Mater. Sci., 1997, 27, 305–379.
9 P. Duan, N. Yanai, H. Nagatomi and N. Kimizuka, J. Am. 34 C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao,
Chem. Soc., 2015, 137, 1887–1894.
A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen and J.-W. Pan,
10 V. Gray, D. Dzebo, M. Abrahamsson, B. Albinsson and
Nat. Photonics, 2010, 4, 549–552.
K. Moth-Poulsen, Phys. Chem. Chem. Phys., 2014, 16, 35 G. Muller, Dalton Trans., 2009, 9692–9707.
10345–10352.
36 M. C. Heffern, L. M. Matosziuk and T. J. Meade, Chem. Rev.,
11 S. P. Hill, T. Dilbeck, E. Baduell and K. Hanson, ACS Energy
Lett., 2016, 1, 3–8.
2014, 114, 4496–4539.
37 F. Zinna and L. Di Bari, Chirality, 2015, 27, 1–13.
12 R. Vadrucci, C. Weder and Y. C. Simon, Mater. Horiz., 2015, 38 Y. Yang, R. C. da Costa, M. J. Fuchter and A. J. Campbell, Nat.
2, 120–124.
Photonics, 2013, 7, 634–638.
This journal is © The Royal Society of Chemistry 2019
Chem. Sci., 2019, 10, 172–178 | 177