Organic Letters
Letter
Chem. 2011, 76, 4158. (d) Shuai, Q.; Deng, G.; Chua, Z.; Bohle, D. S.;
Li, C.-J. Adv. Synth. Catal. 2010, 352, 632. (e) Chen, X.; Hao, X. S.;
Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 6790.
(12) Combinations of Pd(OAc)2/K2S2O8 in dichloroethane and
CuBr/t-BuO-O-t-Bu in toluene (or neat) were unsuitable for
promoting the coupling
ACKNOWLEDGMENTS
■
D.L.P. is grateful to the Alexander von Humboldt Foundation
for a postdoctoral fellowship. W.D. thanks the China
Scholarship Council for a predoctoral stipend.
(13) (a) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47,
1932. (b) Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. J. Am.
Chem. Soc. 2010, 132, 13217. (c) Mitchell, E. A.; Peschiulli, A.;
Lefevre, N.; Meerpoel, L.; Maes, B. U. Chem.Eur. J. 2012, 18, 10092.
(14) The attempt to reduce the metal salt loading from 1 equiv to 20
mol % significantly affected the yield of 6a (22%). That effect is
probably due to the chelating ability of the product to complex the
activating metal, which inhibits turnover.
REFERENCES
■
(1) For selected references regarding bioactive sulfoximines, see:
(a) Raza, A.; Sham, Y. Y.; Vince, R. Bioorg. Med. Chem. Lett. 2008, 18,
5406. (b) Yu, H.; Qin, Z.; Dai, H.; Zhang, X.; Qin, X.; Wang, T.; Fang,
J. J. Agric. Food. Chem. 2008, 56, 11356. (c) Zhu, Y.; Loso, M. R.;
Watson, G. B.; Sparks, T. C.; Rogers, R. B.; Huang, J. X.; Gerwick, B.
C.; Babcock, J. M.; Kelley, D.; Hegde, V. B.; Nugent, B. M.; Renga, J.
M.; Denholm, I.; Gorman, K.; DeBoer, G. J.; Hasler, J.; Meade, T.;
Thomas, J. D. J. Agric. Food. Chem. 2011, 59, 2950. (d) Park, S. J.;
Buschmann, H.; Bolm, C. Bioorg. Med. Chem. Lett. 2011, 21, 4888.
(e) Chen, X. Y.; Buschmann, H.; Bolm, C. Synlett 2012, 23, 2808.
(15) In addition, biphenyl did not react with sulfoximine 5a (20 h
1
reaction time; analysis by TLC and H NMR).
(16) For details, see the Supporting Information
(17) In contrast to the copper complexes detected here, where the
metal and the N,N′-chelating ligand form 6-membered rings, most of
the successfully applied copper sulfoximine complexes appear to
involve 5-membered chelates. For relevant work on asymmetric
catalysis with such complexes, see ref 3 and articles cited therein. An
X-ray crystal structure of a related copper sulfoximine complex can be
found in: Bolm, C.; Verrucci, M.; Simic, O.; Cozzi, P. G.; Raabe, G.;
Okamura, H. Chem. Commun. 2003, 2816.
(f) Lucking, U. Angew. Chem., Int. Ed. 2013, 52, 9399.
̈
(2) Bolm, C.; Felder, M.; Muller, J. Synlett 1992, 439.
̈
(3) For the most recent work in this area from our group, see: Frings,
M.; Thome, I.; Schiffers, I.; Pan, F.; Bolm, C. Chem.Eur. J. 2014, 20,
́
1691.
(4) For the initial reports on compounds 1−3, see: (a) Bolm, C.;
Simic, O. J. Am. Chem. Soc. 2001, 123, 3830. (b) Langner, M.; Bolm,
C. Angew. Chem., Int. Ed. 2004, 43, 5984. (c) Moessner, C.; Bolm, C.
Angew. Chem., Int. Ed. 2005, 44, 7564.
(5) Harmata and co-workers used N-arylated sulfoximines as key
intermediates in total syntheses. For representative examples, see:
(a) Harmata, M.; Pavri, N. Angew. Chem., Int. Ed. 1999, 38, 2419.
(b) Yongpruksa, N.; Pandey, S.; Baker, G. A.; Baker; Harmata, M. Org.
Biomol. Chem. 2011, 9, 7979. (c) Yongpruksa, N.; Calkins, N. L.;
Harmata, M. Chem. Commun. 2011, 7665.
(6) (a) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39, 5731.
(b) Bolm, C.; Hildebrand, J. P. J. Org. Chem. 2000, 65, 169. (c) Bolm,
C.; Hildebrand, J. P.; Rudolph, J. Synthesis 2000, 911. (d) Cho, G. Y.;
Remy, P.; Jansson, J.; Moessner, C.; Bolm, C. Org. Lett. 2004, 6, 3293.
(d) Sedelmeier, J.; Bolm, C. J. Org. Chem. 2005, 70, 6904.
(e) Moessner, C.; Bolm, C. Org. Lett. 2005, 7, 2667. (f) Harmata,
M.; Hong, X.; Ghosh, S. K. Tetrahedron Lett. 2004, 45, 5233.
(g) Harmata, M.; Hong, X. Synlett 2007, 969. (h) Yongpruksa, N.;
Calkins, N. L.; Harmata, M. Chem. Commun. 2011, 47, 7665.
(7) Miyasaka, M.; Hirano, K.; Satoh, T.; Kowalczyk, R.; Bolm, C.;
Miura, M. Org. Lett. 2011, 13, 359.
(8) For extensions of this approach to other N-functionalizations of
sulfoximines, see: (a) Wang, L.; Huang, H.; Priebbenow, D. L.; Pan, F.
F.; Bolm, C. Angew. Chem., Int. Ed. 2013, 52, 3478. (b) Priebbenow, D.
L.; Becker, P. Org. Lett. 2013, 15, 6155. (c) Wang, L.; Priebbenow, D.
L.; Zou, L.-H.; Bolm, C. Adv. Synth. Catal. 2013, 355, 1490.
(9) For selected reviews regarding C−H bond functionalization, see:
(a) Bergman, R. G. Nature 2007, 446, 391. (b) Mkhalid, I. A.; Barnard,
J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010,
110, 890. (c) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698.
(d) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew. Chem., Int.
Ed. 2009, 48, 5094. (e) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius,
F. Chem. Soc. Rev. 2011, 40, 4740. (f) Yeung, C. S.; Dong, V. M. Chem.
Rev. 2011, 111, 1215. (g) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S.
Chem. Soc. Rev. 2011, 40, 5068. (h) Ackermann, L. Chem. Rev. 2011,
111, 1315. (i) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110,
1147. (j) Satoh, T.; Miura, M. Chem.Eur. J. 2010, 16, 11212. (k) Liu,
C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(l) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077.
(m) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41,
3381. (n) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
(10) For a most stimulating review on metal catalysis involving
dioxygen, see: Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400.
(11) For other selected examples of intermolecular C−H/N−H
oxidative cross-couplings, see: (a) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J.
Am. Chem. Soc. 2006, 128, 9048. (b) Uemura, T.; Imoto, S.; Chatani,
N. Chem. Lett. 2006, 35, 842. (c) John, A.; Nicholas, K. M. J. Org.
2663
dx.doi.org/10.1021/ol500963p | Org. Lett. 2014, 16, 2661−2663