6 T. J. Measey, R. Schweitzer-Stenner, V. Sa and K. Kornev,
Macromolecules, 2010, 43, 7800–7806.
7 G. Askarieh, M. Hedhammar, K. Nordling, A. Saenz, C. Casals,
A. Rising, J. Johansson and S. D. Knight, Nature, 2010, 465, 236–
238.
8 J. Mondal, X. Zhu, Q. Cui and A. Yethiraj, J. Phys. Chem. C, 2010,
114, 13551–13556.
9 N. l. Carulla, M. Zhou, E. Giralt, C. V. Robinson and C. M. Dobson,
Acc. Chem. Res., 2010, 43, 1072–1079.
hydrogen bonding interactions endow the HPOX aggregates
with pH- and thermal-responsiveness.
As a result, the tentative mechanism for the formation of the
HPOX nanoparticles and the reversible dual stimuli-respon-
siveness can be attributed to the noncovalent interactions of
hydrogen bonds and oxime bonds.
10 Y. Levy and J. N. Onuchic, Acc. Chem. Res., 2005, 39, 135–142.
11 E. N. Salgado, R. A. Lewis, J. Faraone-Mennella and F. A. Tezcan, J.
Am. Chem. Soc., 2008, 130, 6082–6084.
12 Y. Ruff and J.-M. Lehn, Biopolymers, 2008, 89, 486–496.
13 J.-M. Lehn, Chem. Soc. Rev., 2007, 36, 151–160.
14 S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders and
J. F. Stoddart, Angew. Chem., Int. Ed., 2002, 41, 898–952.
15 V. A. Polyakov, M. I. Nelen, N. Nazarpack-Kandlousy,
A. D. Ryabov and A. V. Eliseev, J. Phys. Org. Chem., 1999, 12,
357–363.
Conclusions
Nonamphiphilic HPOXs were successfully prepared by the
oxime coupling reaction of synthetic trialdehyde and bis-ami-
nooxy, and the functional terminals of the HPOXs could be
modulated by changing the molar feeding ratios of the A2 and B3
1
monomers. H NMR, quantitative 13C NMR, HSQC, HMBC
and FTIR were exploited for analyzing the highly branched
structures. UV-Vis analysis, in conjugation with DLS, TEM,
AFM, SEM and FL confirmed the formation of the HPOX self-
assemblies in the mixed DMSO–H2O solution, with uniform
topology. Through adjusting the structural parameters of the
nonamphiphilic HPOXs, the morphologies of the nanoparticles
varied from sphere to bowl shape due to the alteration in the
intra- and inter-molecular noncovalent interactions. Further-
more, the pH and thermal dual responsiveness of the HPOX self-
assemblies were investigated. The intra- and inter-molecular
driving forces of the HPOX nanoparticles originated from the
noncovalent interactions among the oxime bonds, aminooxy
terminals and amide bonds, rather than the p–p stacking inter-
actions of phenyl groups in the backbone. Primarily, the supra-
molecular interactions between the dynamic oxime bonds and
the alkyl aminooxy groups play a crucial role in the formation of
the HPOX micelles. Moreover, the nonamphiphilic HPOXs
contain a vast number of amide groups, which afford more sites
for multiple hydrogen bonding interactions as well. HPOXs are
orchestrated to construct the novel nonamphiphilic micelles with
stimuli responsiveness. Furthermore, the HPOX self-assemblies
will render us with a profound understanding of the sophisticated
self-assembling behavior of nonamphiphilic biomolecules. This
ongoing work aims to further elucidate the detailed mechanism
of the novel polymeric self-assemblies.
16 J. Liu, W. Huang, Y. Pang, P. Huang, X. Zhu, Y. Zhou and D. Yan,
Angew. Chem., Int. Ed., 2011, 50, 9162–9166.
17 F.-M. Xu, J.-P. Xu, L.-P. Lv and J. Ji, Soft Matter, 2011, 7, 1114–
1120.
18 I. C. Riegel, A. Eisenberg, C. L. Petzhold and D. Samios, Langmuir,
2002, 18, 3358–3363.
19 X. Liu, J.-S. Kim, J. Wu and A. Eisenberg, Macromolecules, 2005, 38,
6749–6751.
20 A. Ebner, L. Wildling, A. S. M. Kamruzzahan, C. Rankl, J. Wruss,
€
C. D. Hahn, M. Holzl, R. Zhu, F. Kienberger, D. Blaas,
P. Hinterdorfer and H. J. Gruber, Bioconjugate Chem., 2007, 18,
1176–1184.
21 R. C. Werlen, M. Lankinen, R. E. Offord, P. August Schubiger,
A. Smith and K. Rose, Cancer Res., 1996, 56, 809–815.
22 T. Zhou, Z. D. Liu, H. Neubert, X. L. Kong, Y. M. Ma and
R. C. Hider, Bioorg. Med. Chem. Lett., 2005, 15, 5007–5011.
23 I. Merino, J. D. Thompson, C. B. Millard, J. J. Schmidt and
Y.-P. Pang, Bioorg. Med. Chem., 2006, 14, 3583–3591.
24 S. Kim, E. Kim, D.-S. Shin, H. Kang and K.-B. Oh, Bioorg. Med.
Chem. Lett., 2002, 12, 895–898.
25 J. M. Hooker, A. Datta, M. Botta, K. N. Raymond and
M. B. Francis, Nano Lett., 2007, 7, 2207–2210.
26 L. Zhang and J. P. Tam, Anal. Biochem., 1996, 233, 87–93.
27 P. E. Dawson and S. B. H. Kent, Annu. Rev. Biochem., 2000, 69, 923–
960.
28 J. A. Borgia and G. B. Fields, Trends Biotechnol., 2000, 18, 243–251.
29 Y. Sohma and S. B. H. Kent, J. Am. Chem. Soc., 2009, 131, 16313–
16318.
30 Y. Jin, L. Song, Y. Su, L. Zhu, Y. Pang, F. Qiu, G. Tong, D. Yan,
B. Zhu and X. Zhu, Biomacromolecules, 2011, 12, 3460–3468.
31 J. Chen, W. Zeng, R. Offord and K. Rose, Bioconjugate Chem., 2003,
14, 614–618.
32 C. J. Hawker, R. Lee and J. M. J. Frechet, J. Am. Chem. Soc., 1991,
113, 4583–4588.
Acknowledgements
33 M. Herrera, G. Manuschek and A. Kettrup, J. Therm. Anal. Calorim.,
2000, 59, 385–394.
34 L. Song, C. Tu, Y. Shi, F. Qiu, L. He, Y. Jiang, Q. Zhu, B. Zhu,
D. Yan and X. Zhu, Macromol. Rapid Commun., 2010, 31, 443–448.
35 M. Herrera, G. Matuschek and A. Kettrup, Chemosphere, 2001, 42,
601–607.
This work is sponsored by the National Natural Science Foun-
dation of China (20974062, 30700175) and the National Basic
Research Program 2009CB930400, the Shuguang Program
(08SG14), the Shanghai Leading Academic Discipline Project
(Project number: B202), and the China National Funds for
Distinguished Young Scientists (21025417).
36 J. Wang, M. Kuang, H. Duan, D. Chen and M. Jiang, Eur. Phys. J. E:
Soft Matter Biol. Phys., 2004, 15, 211–215.
37 W. Cai, G.-T. Wang, Y.-X. Xu, X.-K. Jiang and Z.-T. Li, J. Am.
Chem. Soc., 2008, 130, 6936–6937.
Notes and references
38 Y. Zhou and D. Yan, Angew. Chem., Int. Ed., 2004, 43, 4896–4899.
39 M. Yang, W. Wang, F. Yuan, X. Zhang, J. Li, F. Liang, B. He,
B. Minch and G. Wegner, J. Am. Chem. Soc., 2005, 127, 15107–15111.
40 J.-X. Yang, X.-T. Tao, C. X. Yuan, Y. X. Yan, L. Wang, Z. Liu,
Y. Ren and M. H. Jiang, J. Am. Chem. Soc., 2005, 127, 3278–
3279.
1 L. Wu, J. Lal, K. A. Simon, E. A. Burton and Y.-Y. Luk, J. Am.
Chem. Soc., 2009, 131, 7430–7443.
2 E. Yoshida and S. Kunugi, Macromolecules, 2002, 35, 6665–6669.
3 A. Fegan, B. White, J. C. T. Carlson and C. R. Wagner, Chem. Rev.,
2010, 110, 3315–3336.
4 E. N. Salgado, R. J. Radford and F. A. Tezcan, Acc. Chem. Res.,
2010, 43, 661–672.
5 B. Kokona, A. M. Kim, R. C. Roden, J. P. Daniels, B. J. Pepe-
Mooney, B. C. Kovaric, J. C. de Paula, K. A. Johnson and
R. Fairman, Biomacromolecules, 2009, 10, 1454–1459.
41 C. B. Minkenberg, L. Florusse, R. Eelkema, G. J. M. Koper and
J. H. van Esch, J. Am. Chem. Soc., 2009, 131, 11274–11275.
42 P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor,
J. K. M. Sanders and S. Otto, Chem. Rev., 2006, 106, 3652–3711.
43 J.-M. Lehn, Science, 2002, 295, 2400–2403.
This journal is ª The Royal Society of Chemistry 2012
Soft Matter, 2012, 8, 10017–10025 | 10025