ChemComm
Communication
compounds is intermediate between tin(II) and tin(IV), but
closer to tin(IV) (isomer shifts of III, IV and V are 3.17(1)/
3.15(1), 0.7913c and 0.8213c mm sÀ1, respectively). In the context
of the transition metal rich coordination sphere, even the isomer
shift of 5 (2.05(1) mm sÀ1) is still characteristic of tin(IV), because
compounds Sn[Fe(CO)2C5H5]4 and PhSn[Fe(CO)2C5H5]3, which
are considered tin(IV) compounds, exhibit similar isomer shifts
(of 2.14 and 2.00 mm sÀ1, respectively).19
In conclusion, we have shown that the TM-E coordination
mode is relevant in a great variety of ‘‘stannylene’’ complexes
and that these compounds can be easily accessed from tin(IV)
precursors by coordination of a palladium(0) complex moiety.
In this course, compound 5 revealed a novel coordination
Fig. 2 Molecular structure of 5 in the crystal structure of 5Á(THF)2.
Selected atoms are labelled, displacement ellipsoids show 50% probability, pattern, i.e., with two trans-disposed TM donor moieties in
H atoms are omitted for clarity and PPh3 groups are simplified as a stick
the octahedral tin coordination sphere.
model. Selected bond lengths [Å]: Pd1ÀP1 2.4139(5), Pd2ÀP2 2.4033(5),
Pd1ÀS1 2.3085(5), Pd1ÀS2 2.2969(6), Pd2ÀS3 2.2989(5), Pd2ÀS4 2.3017(6),
Pd1ÀSn1 2.5946(2), Pd2ÀSn1 2.5945(2), Sn1ÀN1 2.464(2), Sn1ÀN2 2.361(2),
Notes and references
Sn1ÀN3 2.397(2), Sn1ÀN4 2.457(2).
1 H. Braunschweig and R. D. Dewhurst, Dalton Trans., 2011, 549.
2 H. Braunschweig, K. Gruss and K. Radacki, Angew. Chem., Int. Ed.,
2009, 48, 4239.
(by up to 0.06 Å). We attribute this bond lengthening along the
P–Pd–Sn axis to the now trans-disposed Pd–Sn bonds. In contrast to
other tin compounds with more than one transition metal in the
Sn coordination sphere, which could be interpreted as bridging
stannylene or stannide complexes,17 the tin atom in 5 cannot exhibit
directional s-lone-pair donation due to the opposing Pd–Sn bonds.
Currently, 5 reveals the widest TM–Sn–TM angle observed in such
heterometallic complexes (175.15(1)1), which is much larger than
the related angle observed in compound VII18 (151.71).
3 H. Braunschweig, K. Gruss and K. Radacki, Angew. Chem., Int. Ed.,
2007, 46, 7782.
4 H. Braunschweig, K. Gruss and K. Radacki, Inorg. Chem., 2008,
47, 8595.
5 E. J. Derrah, M. Sircoglou, M. Mercy, S. Ladeira, G. Bouhadir,
K. Miqueu, L. Maron and D. Bourissou, Organometallics, 2011,
30, 657.
6 J. Wagler and E. Brendler, Angew. Chem., Int. Ed., 2010, 49, 624.
7 J. Wagler, A. F. Hill and T. Heine, Eur. J. Inorg. Chem., 2008, 4225.
´
¨
8 T.-P. Lin, C. R. Wade, L. M. Perez and F. P. Gabbaı, Angew. Chem.,
Int. Ed., 2010, 49, 6357.
¨
9 T.-P. Lin, I.-S. Ke and F. P. Gabbaı, Angew. Chem., Int. Ed., 2012,
To elucidate differences in the Pd–Sn bonding situations of
1, 3, 4 and 5, NBO analyses were performed (see ESI‡). The
electronic populations of the Pd–Sn NBOs are similar (1.79,
1.71, 1.69 and 1.67 electrons for 1, 3, 4 and 5, respectively). The
tin contributions to these NBOs are 57, 54, 52 and 48% in the
same order, reflecting a decrease of s-donor action of tin
(transition towards a s-lone-pair acceptor) along this series.
The natural charges of Pd (ca. À0.6 in 1, 3 and 4; À0.7 in 5)
underline the pronounced role of Pd as the lone pair donor in 5
(i.e., pronounced Pd0-SnIV’Pd0 characteristics). The hybrid
orbital contribution of Pd to the Pd–Sn NBO is always close to
sp2d. In sharp contrast, the Sn hybrid orbital contribution to
the same NBO lacks significant d character and it strongly depends
on the Sn coordination sphere (%s, %p = 73, 27; 51, 49; 40, 60 and
50, 50 for 1, 3, 4 and 5, respectively). Whereas the sp hybrid
contribution of tin within the linear Pd–Sn–Pd coordination in 5
appears plausible, the striking shift from predominant s to p
orbital contributions along the series 1, 3, 4 signals a decrease in
stannylene character in the same direction.
51, 4985; C. Tschersich, C. Limberg, S. Roggan, C. Herwig,
N. Ernsting, S. Kovalenko and S. Mebs, Angew. Chem., Int. Ed.,
2012, 51, 4989.
¨
10 T.-P. Lin and F. P. Gabbaı, Angew. Chem., Int. Ed., 2013, 52, 3864.
11 E. Brendler, E. Wachtler, T. Heine, L. Zhechkov, T. Langer,
¨
¨
R. Pottgen, A. F. Hill and J. Wagler, Angew. Chem., Int. Ed., 2011,
50, 4696.
´
´
ˇ
12 J. Martincova, L. Dostal, S. Herres-Pawlis, A. Ru˚ˇzicka and R. Jambor,
Chem.–Eur. J., 2011, 17, 7423.
13 (a) J. Ichikawa and T. Mukaiyama, Chem. Lett., 1985, 1009;
(b) M. Masaki and S. Matsunami, Bull. Chem. Soc. Jpn., 1976,
49, 3274; (c) F. Huber, R. Schmiedgen, M. Schu¨rmann, R. Barbieri,
G. Ruisi and A. Silvestri, Appl. Organomet. Chem., 1997, 11, 869;
ˆ
(d) M. Boualam, J. Meunier-Piret, M. Biesemans, R. Willem and
M. Gielen, Inorg. Chim. Acta, 1992, 198–200, 249; (e) E. Wachtler,
R. Gericke, S. Kutter, E. Brendler and J. Wagler, Main Group Met.
Chem., 2013, 36, 181.
¨
14 Y. Nakatsu, Y. Nakamura, K. Matsumoto and S. Ooi, Inorg. Chim.
Acta, 1992, 196, 81.
15 A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor,
J. Chem. Soc., Dalton Trans., 1984, 1349.
16 (a) U. Mu¨ller, J. Siekmann and G. Frenzen, Acta Crystallogr., Sect. C:
Cryst. Struct. Commun., 1996, 52, 330; (b) D. Weber, S. H. Hausner,
¨
A. Eisengraber-Pabst, S. Yun, J. A. Krause-Bauer and H. Zimmer,
119
À1
Inorg. Chim. Acta, 2004, 357, 125.
¨
Sn Mossbauer data (isomer shifts in mm s for 1, 3, 4
17 (a) R. D. Ball and D. Hall, J. Organomet. Chem., 1973, 56, 209;
(b) E. Simon-Manso and C. P. Kubiak, Angew. Chem., Int. Ed.,
2005, 44, 1125.
18 A. Balch, H. Hope and F. E. Wood, J. Am. Chem. Soc., 1985, 107, 6936.
19 V. I. Gol’danskii, B. V. Borshagovskii, E. F. Makarov, R. A. Stukan,
K. N. Anisimov, N. E. Kolobova and V. V. Skripkin, Teor. Eksp. Khim.,
1967, 3, 478.
and 5 are 1.63(1), 1.81(1), 1.54(1) and 2.05(1), respectively)
indicate varying 5s level populations in the tin atoms of these
compounds, which are in good agreement with the calculated
5s populations (1.05, 1.11, 0.94 and 1.09 electrons in the same
order). Thus, the electronic population of the Sn atom in these
5384 | Chem. Commun., 2014, 50, 5382--5384
This journal is ©The Royal Society of Chemistry 2014