ChemComm
Communication
This work is funded by CSIR [Grant 01(2412)10/EMr-II] and DST
(Grant SR/IC-35/2009). P.K.D. and K.M. acknowledge a CSIR SRF
fellowship.
Notes and references
1 E. A. Kerr, N. T. Yu, D. E. Bartnicki and H. Mizukami, J. Biol. Chem.,
1985, 260, 8360–8365.
2 W. E. Brown, J. W. Sutcliffe and P. D. Pulsinelli, Biochemistry, 1983,
22, 2914–2923.
3 M. Sono, M. P. Roach, E. D. Coulter and J. H. Dawson, Chem. Rev.,
1996, 96, 2841–2888.
4 Z. Gross, S. Nimri, C. M. Barzilay and L. Simkhovich, JBIC, J. Biol.
Inorg. Chem., 1997, 2, 492–506.
5 C. Varotsis, Y. Zhang, E. H. Appelman and G. T. Babcock, Proc. Natl.
Acad. Sci. U. S. A., 1993, 90, 237–241.
6 M. T. Green, J. H. Dawson and H. B. Gray, Science, 2004, 304, 1653–1656.
7 J. Rittle and M. T. Green, Science, 2010, 330, 933–937.
8 M. Newcomb, R. Zhang, R. E. P. Chandrasena, J. A. Halgrimson, J. H.
Horner, T. M. Makris and S. G. Sligar, J. Am. Chem. Soc., 2006, 128,
4580–4581.
9 S. Shaik, D. Kumar, S. l. P. de Visser, A. Altun and W. Thiel, Chem.
Rev., 2005, 105, 2279–2328.
10 K. D. Sharma, L. A. Andersson, T. M. Loehr, J. Terner and H. M. Goff,
J. Biol. Chem., 1989, 264, 12772–12779.
11 L. Que Jr., Coord. Chem. Rev., 1983, 50, 73–108.
12 A. Robert, B. Loock, M. Momenteau and B. Meunier, Inorg. Chem.,
1991, 30, 706–711.
13 K. B. Cho, H. Chen, D. Janardanan, S. P. de Visser, S. Shaik and
W. Nam, Chem. Commun., 2012, 48, 2189–2191.
14 M. S. Seo, N. H. Kim, K. B. Cho, J. E. So, S. K. Park, M. Clemancey, R. Garcia-
Serres, J. M. Latour, S. Shaik and W. Nam, Chem. Sci., 2011, 2, 1039–1045.
15 D. A. Proshlyakov, T. F. Henshaw, G. R. Monterosso, M. J. Ryle and
R. P. Hausinger, J. Am. Chem. Soc., 2004, 126, 1022–1023.
16 J. M. Burke, J. R. Kincaid, S. Peters, R. R. Gagne, J. P. Collman and
T. G. Spiro, J. Am. Chem. Soc., 1978, 100, 6083–6088.
17 K. M. Vogel, P. M. Kozlowski, M. Z. Zgierski and T. G. Spiro, J. Am.
Chem. Soc., 1999, 121, 9915–9921.
Fig. 4 rR data for the oxidized, reduced and oxygenated samples of
FeIII(HOPhP) (A) and PIM (B) complexes, at 77 K.
18 M. Seal, S. Mukherjee, D. Pramanik, K. Mittra, A. Dey and S. G. Dey,
Chem. Commun., 2012, 49, 1091–1093.
Table 1 The nFe–O frequencies for the Fe–O2 adduct
19 K. Mittra, S. Chatterjee, S. Samanta, K. Sengupta, H. Bhattacharjee
and A. Dey, Chem. Commun., 2012, 48, 10535–10537.
20 M. Momenteau and C. A. Reed, Chem. Rev., 1994, 94, 659–698.
21 W. D. Wagner, I. R. Paeng and K. Nakamoto, J. Am. Chem. Soc., 1988,
110, 5565–5567.
22 M. A. Walters, T. G. Spiro, K. S. Suslick and J. P. Collman, J. Am.
Chem. Soc., 1980, 102, 6857–6858.
23 J. P. Collman, J. I. Brauman, T. R. Halbert and K. S. Suslick, Proc.
Natl. Acad. Sci. U. S. A., 1976, 73, 3333–3337.
24 T. K. Das, M. Couture, Y. Ouellet, M. Guertin and D. L. Rousseau,
Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 479–484.
Complex
n(Fe–O2)/cmÀ1
Ref.
À
FeII(OPhP)(O2 ꢀ)(1)
570
584
578
567–576
537–545
568–582
530–540
This work
This work
This work
2, 34
26, 28, 35
16, 33
FeII(HOÀPhP)(THF)(O2 ꢀ)(2)
À
PIM(O2 ꢀ)(3)
(HbA/Mb)Fe–O2
(P450cam)Fe–O2
(Imd)(TPpivP)Fe–O2
(C6H5SÀ)(TPpivP)Fe–O2
26, 36
25 F. Tani, M. Matsu-ura, K. Ariyama, T. Setoyama, T. Shimada,
S. Kobayashi, T. Hayashi, T. Matsuo, Y. Hisaeda and Y. Naruta,
Chem.–Eur. J., 2003, 9, 862–870.
26 S. Hu, A. J. Schneider and J. R. Kincaid, J. Am. Chem. Soc., 1991, 113,
4815–4822.
in the oxidized, reduced and oxygenated spectra (Fig. S7 and S8, ESI†).
Thus these sets of oxy adducts likely have similar electronic structures.
The data presented here indicate that the nFe–O stretching vibration
of oxygen adducts of iron porphyrin complexes shifts from 584 cmÀ1
to 570 cmÀ1 as the trans axial ligand is varied from solvent (THF)
to phenolate (Table 1). The nFe–O vibrations of Fe–O2 adducts in
imidazole bound protein active sites are from B567 to 576 cmÀ1. The
27 F. Tani, M. Matsu-ura, S. Nakayama, M. Ichimura, N. Nakamura and
Y. Naruta, J. Am. Chem. Soc., 2001, 123, 1133–1142.
28 D. E. Benson, K. S. Suslick and S. G. Sligar, Biochemistry, 1997, 36, 5104–5107.
29 P. K. Das, S. Chatterjee, S. Samanta and A. Dey, Inorg. Chem., 2012,
51, 10704–10714.
nFe–O vibration shifts to 545 cmÀ1 i.e. weakens by B25 cmÀ1 in Cyt 30 S. Samanta, K. Sengupta, K. Mittra, S. Bandyopadhyay and A. Dey,
Chem. Commun., 2012, 48, 7631–7633.
P450 where a thiolate is bound. Here the data indicate that replacing
31 A. Ivancich, C. Jakopitsch, M. Auer, S. Un and C. Obinger, J. Am.
an imidazole with phenolate lowers the nFe–O vibration by 8 cmÀ1
.
Chem. Soc., 2003, 125, 14093–14102.
Thus, judging by the nFe–O vibration of Fe–O2 adducts, the relative 32 J. P. Collman, R. Boulatov, C. J. Sunderland and L. Fu, Chem. Rev.,
2003, 104, 561–588.
33 J. G. Liu, Y. Shimizu, T. Ohta and Y. Naruta, J. Am. Chem. Soc., 2010,
‘push-effects’ of these ligands known to bind heme biologically can be
in the order RSÀ > PhOÀ > imidazole. Thus phenolate, in spite of
132, 3672–3673.
being an anionic ligand like thiolate exerts a much lower trans 34 M. Tsubaki, K. Nagai and T. Kitagawa, Biochemistry, 1980, 19, 379–385.
35 O. Bangcharoenpaurpong, A. K. Rizos, P. M. Champion, D. Jollie
and S. G. Sligar, J. Biol. Chem., 1986, 261, 8089–8092.
36 G. Chottard, M. chappacher, L. Ricard and R. Weiss, Inorg. Chem.,
influence on the Fe–O bond of an Fe–O2 adduct. This difference
likely originates from a larger covalent contribution in bonding
between an Fe and a thiolate relative to a phenolate.
1984, 23, 4557–4561.
5220 | Chem. Commun., 2014, 50, 5218--5220
This journal is ©The Royal Society of Chemistry 2014