CrystEngComm
Paper
Table 1 Crystal form and solid-state fluorescence spectral data of
complexes I–VIa
Acknowledgements
λem nm−1
ΦF
a
This study was supported by a Grant-in-Aid for Scientific
Research (no. 24550165) from the Ministry of Education,
Culture, Sports, Science and Development Program from JST
and the KDDI Foundation.
Complex
Crystal colour
Crystal shape
I
II
III
IV
V
Yellow
Block
Plate
Needle
Plate
Block
Block
348
352
ND
ND
350
350
0.12
0.09
Weak
Weak
0.28
Colourless
Colourless
Colourless
Colourless
Colourless
VI
0.10
Notes and references
a
Excitation wavelengths are 329, 339, 332, and 333 nm for
complexes I, II, V, and VI, respectively.
1 (a) W. C. McCrone, Physics and Chemistry of the Organic Solid
State, ed. D. Fox, M. M. Labes, A. Weissberger, Wiley
Interscience, New York, 1965, vol. 2, pp. 725–767; (b)
J. Bernstein, in Organic Solid State Chemistry, ed. G. R. Desiraju,
Elsevier, Amsterdam, 1987, pp. 471–518; (c) J. D. Dunitz and
J. Bernstein, Acc. Chem. Res., 1995, 28, 193–200; (d) N. Sanz,
P. L. Baldeck, J. F. Nicoud, Y. L. Fur and A. Ibanez, Solid
State Sci., 2001, 3, 867–875; (e) J. Bernstein, Polymorphism
in Molecular Crystals, Clarendon, Oxford, 2002; ( f)
H. G. Brittain, Polymorphism in Pharmaceutical Solids,
Marcel Dekker, Inc., New York, 1999; (g) L. Yu, J. Phys.
Chem. A, 2002, 106, 544–550; (h) P. Vishweshwar,
J. A. McMahon, M. Oliveira, M. L. Peterson and
M. J. Zaworotko, J. Am. Chem. Soc., 2005, 127, 16802–16803;
(i) T. Mutai, H. Satou and K. Araki, Nat. Mater., 2005, 4,
685–687; ( j) G. R. Desiraju, Cryst. Growth Des., 2008, 8, 3–5;
(k) D. E. Braun, T. Gelbrich, R. K. R. Jetti, V. Kahlenberg,
S. L. Price and U. Griesser, Cryst. Growth Des., 2008, 8,
1977–1989; (l) A. Brillante, I. Bilotti, R. Guido, D. Valle,
E. Venuti and A. Girlando, CrystEngComm, 2008, 10,
937–946; (m) J. Bernstein, J. D. Dunitz and A. Gavezzotti,
Cryst. Growth Des., 2008, 8, 2011–2018; (n) Y. Imai,
T. Kinuta, K. Nagasaki, T. Harada, T. Sato, N. Tajima,
Y. Sasaki, R. Kuroda and Y. Matsubara, CrystEngComm,
2009, 11, 1223–1226; (o) J. Tian, S. J. Dalgarno and
J. L. Atwood, J. Am. Chem. Soc., 2011, 133, 1399–1404,
and references cited therein.
to the packing style of I. On the other hand, the packing style
of VI is different from that of both I and III. These results sug-
gest that in 2-naphthalenecarboxylic acid-based supramolecu-
lar complexes, control of crystal structures may be influenced
not only by the size of the substituent on the benzylamine
derivative, but also by the halogen–π or CH–π interactions of
the substituent on the benzylamine derivative.
To investigate the solid-state optical properties of the
obtained supramolecular complexes I–VI, solid-state fluores-
cence spectra of these complexes were measured. The crys-
tal form and solid-state fluorescence spectral data of I–VI
are presented in Table 1. Although one important issue
involving solid-state organic fluorophores is fluorescence
quenching in the crystalline state, chlorine-containing com-
plexes I and II and methyl-containing complexes V and VI
exhibit fluorescence in the solid state. Bromine-containing
complexes III and IV did not exhibit fluorescence. This is
due to the heavy atom effect of bromine within the crystals.
The solid-state fluorescence maxima (λem) in complexes I,
II, V, and VI were not dramatically different. However, the
absolute value of the photoluminescence quantum yield
(ΦF) increases in ortho-substituted complexes as compared
to meta-substituted complexes. This might be explained
by the lesser degree of interactions with neighbouring
naphthalene units in the ortho-substituted complexes.
2 (a) Y. Mizobe, N. Tohnai, M. Miyata and Y. Hasegawa, Chem.
Commun., 2005, 1839–1841; (b) S. Oshita and A. Matsumoto,
Langmuir, 2006, 22, 1943–1945; (c) Y. Ooyama and
K. Yoshida, Eur. J. Org. Chem., 2008, 2564–2570; (d) J. Luo,
T. Lei, L. Wang, Y. Ma, Y. Cao, J. Wang and J. Pei, J. Am.
Chem. Soc., 2009, 131, 2076–2077; (e) T. Kinuta, K. Kamon,
T. Harada, Y. Nakano, N. Tajima, T. Sato, M. Fujiki,
R. Kuroda, Y. Matsubara and Y. Imai, Eur. J. Org. Chem.,
2009, 5760–5764; ( f) N. Nishiguchi, T. Sato, T. Kinuta,
R. Kuroda, Y. Matsubara and Y. Imai, Cryst. Growth Des.,
2011, 11, 827–831; (g) N. Nishiguchi, T. Kinuta, Y. Nakano,
T. Harada, N. Tajima, T. Sato, M. Fujiki, R. Kuroda,
Y. Matsubara and Y. Imai, Chem.–Asian J., 2011, 6,
1092–1098; (h) N. Nishiguchi, T. Kinuta, T. Sato, Y. Nakano,
H. Tokutome, N. Tajima, M. Fujiki, R. Kuroda, Y. Matsubara
and Y. Imai, Chem.–Asian J., 2012, 7, 360–366; (i)
N. Taniguchi, R. Shimomaki, T. Amako, T. Sato,
H. Tokutome, N. Tajima, R. Kuroda, M. Fujiki and Y. Imai,
Asian J. Org. Chem., 2013, 2, 681–687.
Conclusions
Two-component fluorescent supramolecular organic com-
plexes were successfully created using 1 and chloro-, bromo-,
or methyl-substituted benzylamine derivatives. Supramolecu-
lar complexes utilizing ortho-substituted, halogen-containing
benzylamine derivatives are composed of column-like network
structures. In contrast, supramolecular complexes employing
meta-substituted, halogen-containing benzylamine derivatives
are composed of 2D-layered network structures. These two
types of crystal structures can be controlled by altering the
substituent type and its position on the benzylamine compo-
nent. In addition, 2-naphthalenecarboxylic acid-based supra-
molecular complexes show solid-state fluorescence when
complexed with chlorobenzylamine or methylbenzylamine.
These supramolecular systems are a substantial advancement
in the development of novel solid-state organic fluorophores.
This journal is © The Royal Society of Chemistry 2014
CrystEngComm, 2014, 16, 1741–1748 | 1747