Journal of the American Chemical Society
reaction was not impeded by ortho substituents on the Supporting Information
Page 4 of 5
1
2
3
4
5
6
7
8
aromatic ring (25–26, 88–90% yield). With respect to hetero-
aromatic coupling partners, we have found that a range of
substituted pyridyl bromides are also effective electrophiles
(29–32, 50–90% yield). Perhaps most importantly, this
transformation is not limited to electron-deficient pyridines.
For example, quinoline, isoquinoline, and pyrimidine can be
readily employed in this HAT-metallaphotoredox-mediated
aldehyde C–H arylation (33–35, 79–87% yield).
Having demonstrated the capacity of aryl bromides to
participate in this new ketone-forming reaction, we were
delighted to find that vinyl electrophiles can also be
incorporated (36–38, 56–74% yield). Perhaps more important
was the finding that alkyl halides can also be employed to
generate non-conjugated ketones. Indeed, we have found that
this transformation can accommodate cyclic and acyclic
aliphatic bromides with useful levels of efficiency (39–41, ≥55%
yield). To our knowledge this is the first time that aldehydes
have been merged with aliphatic bromides to generate
saturated ketones in one chemical step.
We next turned our attention to the scope of the formyl
component. As shown in Table 2, an assortment of readily
available aldehydes are viable. For example, primary
aldehydes are effective coupling partners, including substrates
that incorporate carbamate, phenyl, unprotected alcohol, and
tert-butyl groups (42–48, 70–92% yield). Notably,
acetaldehyde, which is extremely volatile, can be readily
employed (44, 70% yield). Moreover, a-branched alkanals
were found to readily undergo this C–H arylation (49 and 50,
both 91% yield). Ring-bearing formyl systems were also
successful, including cyclohexyl, cyclopentyl, cyclopropyl and
tetrahydropyranyl carboxaldehyde (51–54, 81–90% yield).
Lastly, aromatic aldehydes were found to couple with aryl
halides proficiently despite the diminished hydridic nature of
these formyl C–H bonds (55–57, 70–73% yield).
The Supporting Information is available free of charge on
the ACS Publications website at DOI: (link to DOI)
Experimental procedures and compound characterization
data (PDF)
AUTHOR INFORMATION
Corresponding Author
*dmacmill@princeton.edu
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENTS
Financial support provided by the NIHGMS (R01
GM103558-05) and kind gifts from Merck, BMS, Janssen,
and Eli Lilly. X. Z. is grateful for a postdoctoral fellowship
from the Shanghai Institute of Organic Chemistry.
REFERENCES
(1) (a) McDaniel, R.; Thamchaipenet, A.; Gustafsson, C.; Fu, H.;
Betlach, M.; Betlach, M.; Ashley, G. Proc. Natl. Acad. Sci. USA 1999,
96, 1846. (b) Cuquerella, M. C.; Lhiaubet-Vallet, V.; Cadet, J.;
Miranda, M. A. Acc. Chem. Res. 2012, 45, 1558. (c) Kamat, P. V.
Chem. Rev. 1993, 93, 267.
(2) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3818. (b)
Sartori, G.; Maggi, R. Chem. Rev. 2006, 106, 1077. (c) Bechara, W.
S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228.
(3) For selected reviews, see: (a) Miyaura, N.; Suzuki, A. Chem.
Rev. 1995, 95, 2457; (b) Willis, M. C. Chem. Rev. 2010, 110, 725. (c)
Wu, X.-F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40, 4986.
(d) Moragas, T.; Correa, A.; Martin, R. Chem. Eur. J. 2014, 20, 8242.
(4) For selected examples, see: (a) Takemiya, A; Hartwig,. J. F. J.
Am. Chem. Soc. 2006, 128, 14800. (b) Gooßen, L. J.; Rudolphi, F.;
Oppel, C.; Rodríguez, N. Angew. Chem., Int. Ed. 2008, 47, 3043. (c)
Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75. (d)
Amani, J.; Molander, G. A. J. Org. Chem. 2017, 82, 1856.
(5) (a) Huang, Y.-C.; Majumdar, K. K.; Cheng, C.-H. J. Org. Chem.
2002, 67, 1682. (b) Pucheault, M.; Darses, S.; Genet, J.-P. J. Am.
Chem. Soc. 2004, 126, 15356. (c) Ko, S.; Kang, B.; Chang, S. Angew.
Chem. Int. Ed. 2005, 44, 455. (d) Ruan, J.; Saidi, O.; Iggo, J. A.; Xiao,
J. J. Am. Chem. Soc. 2008, 130, 10510. (e) Suchand, B.;
Satyanarayana, G. J. Org. Chem. 2016, 81, 6409.
(6) (a) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M.
S. J. Am. Chem. Soc. 2011, 133, 18566. (b) Sahoo, B.; Hopkinson, M.
N.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 5505. (c) Shu, X.-z.;
Zhang, M.; He, Y.; Frei, H.; Toste, F. D. J. Am. Chem. Soc. 2014, 136,
5844. (d) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A.
G.; MacMillan, D. W. C. Science 2014, 345, 437. (e) Tellis, J. C.;
Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
(7) (a) Corcoran, E. B.; Pirnot, M. T.; Lin, S.; Dreher, S. D.;
DiRocco, D. A.; Davies, I. W.; Buchwald, S. L.; MacMillan, D. W. C.
Science 2016, 353, 279. (b) Oderinde, M. S.; Frenette, M.; Robbins,
D. W.; Aquila, B.; Johannes, J. W. J. Am. Chem. Soc. 2016, 138, 1760.
(c) Oderinde, M. S.; Jones, N. H.; Juneau, A.; Frenette, M.; Aquila, B;
Tentarelli, S; Robbins, D. W.; Johannes, J. W. Angew. Chem. Int. Ed.
2016, 55, 13219.
O
Ir Ni
H
Br
Cl
O
Cl
H
F
F
K2CO3
58
59
60, 77% yield
via subsequent
Cl
coupling with
OH
O
Cl
N
OH
F
HN
haloperidol
antipsychotic medication
61
commercially available
79% yield (61% yield over two steps)
(8) (a) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J.
D.; MacMillan, D. W. C. Science 2016, 352, 1304. (b) Le, C.; Liang,
Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Nature 2017, 547, 79.
(9) Roberts, B.P. Chem. Soc. Rev. 1999, 28, 25.
(10) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal,
R. A., Jr.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17,
5712.
(11) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. Science 2015,
349, 1532.
(12) (a) Fontana, F.; Minisci, F.; Barbosa, M. C. N.; Vismara, E. J.
Org. Chem. 1991, 56, 2866. (b) Chatgilialoglu, C.; Crich, D.;
Komatsu, M.; Ryu, I. Chem. Rev. 1999, 99, 1991.
Figure 1. Two-Step Synthesis of Haloperidol.
To highlight the synthetic utility of this triple catalytic
mechanism and its potential application to drug-like molecules,
we have accomplished a two-step synthesis of haloperidol, a
well-established antipsychotic medication.16 As shown in
Figure 1, 4-chlorobutanal 58 and 1-bromo-4-fluorobenzene 59
were successfully combined using our aldehyde coupling
protocol to forge ketone 60 in good yield (77%). Exposure of
this g-chloroarylketone to the piperidine nucleophile 61
subsequently delivered haloperidol in relatively short order.
ACS Paragon Plus Environment