Journal of the American Chemical Society
Communication
Synth. Catal. 2010, , 352, 317. Mn: (g) Ozawa, T.; Kurahashi, T.;
Matsubara, S. Org. Lett. 2012, 14, 3008.
Scheme 6
(4) Ye, L.; Chen, Q.; Zhang, J.; Michelet, V. J. Org. Chem. 2009, 74,
9550.
(5) Oonishi, Y.; Kitano, Y.; Sato, Y. Angew. Chem., Int. Ed. 2012, 51,
7305.
(6) Mukai et al. have also reported the closely related rhodium-
catalyzed reaction: Mukai, C.; Ohta, Y.; Oura, Y.; Kawaguchi, Y.; Inagaki,
F. J. Am. Chem. Soc. 2012, 134, 19580.
catalyze the enantioselective cycloisomerization of 1,6-enynes,
possessing carbonyl groups at the enyne linkage, to 2-
alkylidenebicyclo[3.1.0]hexanes. The present cycloisomerization
may involve the site selective γ-hydrogen elimination by
coordination of the carbonyl group to rhodium. The one-pot
enantioselective cycloisomerization and lactonization of 1,6-
enynes to produce bicyclic lactones proceeded in good yields by
the addition of TsOH·H2O after the rhodium-catalyzed
cycloisomerization.
(7) For other examples of the transition-metal-catalyzed cyclopropane
ring formation presumably through γ-hydrogen elimination: (a) Mao, J.;
Zhang, S.-Q.; Shi, B.-F.; Bao, W. Chem. Commun. 2014, 50, 3692.
(b) Kim, H. S.; Gowrisankar, S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett.
2008, 49, 3858. (c) Liron, F.; Knochel, P. Tetrahedron Lett. 2007, 48,
4943. (d) Schweizer, S.; Song, Z.-Z.; Meyer, F. E.; Parsons, P. J.; de
Meijere, A. Angew. Chem., Int. Ed. 1999, 38, 1452. (e) Mallien, M.;
Haupt, E. T. K.; tom Dieck, H. Angew. Chem., Int. Ed. Engl. 1988, 27,
1062.
(8) For selected recent reviews of the transition-metal-catalyzed sp3
C−H bond activation: (a) Qin, Y.; Ly, J.; Luo, S. Tetrahedron Lett. 2014,
55, 551. (b) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed.
2014, 53, 74. (c) Ramirez, T. A.; Zhao, B.; Shi, Y. Chem. Soc. Rev. 2012,
41, 931. (d) Baudoin, O. Chem. Soc. Rev. 2011, 40, 4902. (e) Li, H.; Lia,
B.-J.; Shi, Z.-J. Catal. Sci. Technol. 2011, 1, 191. (f) Jazzar, R.; Hitce, J.;
Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.Eur. J. 2010, 16,
2654.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and characterization data. This material is
■
S
AUTHOR INFORMATION
Corresponding Author
Notes
■
(9) Ishida, M.; Tanaka, K. Org. Lett. 2013, 15, 2120.
(10) For the cationic rhodium(I)/bisphosphine complex-catalyzed
cyclization of 1,6-diynes with carboxylic acids: Tanaka, K.; Saito, S.;
Hara, H.; Shibata, Y. Org. Biomol. Chem. 2009, 7, 4817.
(11) For the cycloisomerization of 1,6-enynes, leading to exocyclic 1,3-
dienes, by using a neutral iridium(I) complex and acetic acid:
(a) Chatani, N.; Inoue, H.; Morimoto, T.; Muto, T.; Murai, S. J. Org.
Chem. 2001, 66, 4433. (b) Yamamoto, Y.; Hayashi, H.; Saigoku, T.;
Nishiyama, H. J. Am. Chem. Soc. 2005, 127, 10804.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported partly by a Grant-in-Aid for Scientific
Research (No. 25105714) from the Ministry of Education,
Culture, Sports, Science and Technology (Japan) and ACT-C
from the Japan Science and Technology Agency (Japan). We are
grateful to Takasago International Corporation for the gift of
Segphos, BINAP, and H8-BINAP derivatives and Umicore for
generous support in supplying rhodium complexes.
(12) Ishida, M.; Shibata, Y.; Noguchi, K.; Tanaka, K. Chem.Eur. J.
2011, 17, 12578.
(13) Lowering the amount of benzoic acid and reaction temperature
decreased the product yields.
(14) (a) Bhasker, R. A.; Qi, C.; Eugene, A. M. Tetrahedron: Asymmetry
2000, 11, 4681. (b) Ichiba, T.; Higa, T. J. Org. Chem. 1986, 51, 3364.
(15) See the Supporting Information.
(16) A rhodium carboxylate is probably needed to promote the present
C−H bond activation. For the effect of rhodium and iridium
carboxylates to promote σ-bond metathesis by way of a 6-centered
(rather than 4-centered) transition state: (a) Kong, J.-R.; Ngai, M.-Y.;
Krische, M. J. J. Am. Chem. Soc. 2006, 128, 718. (b) Ngai, M.-Y.; Barchuk,
A.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 280.
REFERENCES
■
(1) For recent general reviews of the transition-metal-catalyzed
cycloisomerization reactions: (a) Yamamoto, Y. Chem. Rev. 2012, 112,
4736. (b) Nevado, C.; Echavarren, A. M. Synthesis 2005, 167. (c) Ojima,
I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635.
(d) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (e) Trost,
B. M. Science 1991, 254, 1471.
(2) For recent reviews that focus on the transition-metal-catalyzed
cycloisomerization of enynes: (a) Marinetti, A.; Jullien, H.; Voituriez, A.
Chem. Soc. Rev. 2012, 41, 4884. (b) Lee, S. I.; Chatani, N. Chem.
Commun. 2009, 371. (c) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem.
Rev. 2008, 108, 3351. (d) Shen, H. C. Tetrahedron 2008, 64, 7847.
(e) Villar, H.; Fringsa, M.; Bolm, C. Chem. Soc. Rev. 2007, 36, 55.
(17) (a) Peed, J.; Domínguez, I. P.; Davies, I. R.; Cheeseman, Matt.;
Taylor, J. E.; Kociok-Kohn, G.; Bull, S. D. Org. Lett. 2011, 13, 3592.
̈
(b) Sugahara, K.; Watanabe, S.; Fujita, C.; Sakamoto, M.; Sugimoto, K.
Nippon Kagaku Kaishi 1991, 1526. (c) Sugahara, K.; Fujita, T.;
Watanabe, S.; Sakamoto, M.; Sugimoto, K. Synthesis 1990, 783.
(d) Imanishi, T.; Yamashita, M.; Matsui, M.; Tanaka, T.; Miyashita,
K.; Iwata, C. Chem. Pharm. Bull. 1992, 40, 2691. (e) Imanishi, T.; Matsui,
M.; Yamashita, M.; Iwata, C. J. Chem. Soc., Chem. Commun. 1987, 1802.
(f) Sugahara, K.; Suga, K.; Fujita, T.; Watanabe, S.; Sugimoto, K.
Synthesis 1985, 342.
(f) Mori, M. Adv. Synth. Catal. 2007, 349, 121. (g) Jimenez-Nunez, E.;
́
́
̃
Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (h) Zhang, L.; Sun, J.;
Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (i) Bruneau, C. Angew.
Chem., Int. Ed. 2005, 44, 2328. (j) Fairlamb, I. J. S. Angew. Chem., Int. Ed.
2004, 43, 1048. (k) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev.
2002, 102, 813. (l) Trost, B. M.; Krische, M. J. Synlett 1998, 1. (m) Lu,
X.; Zhu, G.; Wang, Z.; Ma, S.; Ji, J.; Zhang, Z. Pure Appl. Chem. 1997, 69,
553. (n) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215.
(18) (a) Nair, L. G.; Saksena, A.; Lovey, R.; Sannigrahi, M.; Wong, J.;
Kong, J.; Fu, X.; Girijavallabhan, V. J. Org. Chem. 2010, 75, 1285.
(b) Fischer, D.; Theodorakis, E. A. Eur. J. Org. Chem. 2007, 25, 4193.
(c) Leitich, J.; Sprintschnik, G. Chem. Ber. 1986, 119, 1640.
(3) Pt: (a) Blum, J.; Beer-Kraft, H.; Badrieh, Y. J. Org. Chem. 1995, 60,
5567. Ye, L.; Chen, Q.; Zhang, J.; Michelet, V. J. Org. Chem. 2009, 74,
9550. Au: (b) Zhang, D.-H.; Wei, Y.; Shi, M. Chem.Eur. J. 2012, 18,
7026. (c) Pradal, A.; Chao, C.-M.; Toullec, P. Y.; Michelet, V. Beilstein J.
Org. Chem. 2011, 7, 1021. Rh: (d) Kim, S. Y.; Chung, Y. K. J. Org. Chem.
2010, 75, 1285. (e) Nishimura, T.; Maeda, Y.; Hayashi, T. Org. Lett.
2011, 13, 3674. Ir: (f) Sim, S. H.; Lee, S. I.; Park, J. H.; Chung, Y. K. Adv.
7630
dx.doi.org/10.1021/ja504048u | J. Am. Chem. Soc. 2014, 136, 7627−7630