Page 7 of 8
ACS Catalysis
(23) For selected reviews, see: (a) Satoh, T.; Miura, M. Oxidative
and α-Diazoesters.
A
Facile Synthesis of Functionalized
Coupling of Aromatic Substrates with Alkynes and Alkenes under
Rhodium Catalysis. Chem. Eur. J. 2010, 16, 11212–11222. (b)
Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Rhodium
Catalyzed Chelation-Assisted C–H Bond Functionalization
Reactions. Acc. Chem. Res. 2012, 45, 814–825. (c) Chen, X.; Engle,
K.; Wang, D-H.; Yu, J.-Q. Palladium(II)-Catalyzed C–H
Activation/C–C Cross-Coupling Reactions: Versatility and
Practicality. Angew. Chem. Int. Ed. 2009, 48, 5094 –5115. (d) Piou,
T.; Rovis, T. Electronic and Steric Tuning of a Prototypical Piano
Stool Complex: Rh(III) Catalysis for C–H Functionalization. Acc.
Chem. Res. 2018, 51, 170–180.
(24) Webb, N. J.; Marsden, S. P.; Raw, S. A. Rhodium(III)-
Catalyzed C–H Activation/Annulation with Vinyl Esters as an
Acetylene Equivalent. Org. Lett. 2014, 16, 4718–4721.
(25) Wu, J.-Q.; Zhang, S.-S.; Gao, H.; Qi, Z.; Zhou, C.-J.; Ji, W.-W.;
Liu, Y.; Chen, Y.; Li, Q.; Li, X.; Wang, H. Experimental and
Theoretical Studies on Rhodium-Catalyzed Coupling of
Benzamides with 2,2-Difluorovinyl Tosylate: Diverse Synthesis of
Fluorinated Heterocycles. J. Am. Chem. Soc. 2017, 139, 3537–
3545.
Benzolactams. Org. Biomol. Chem. 2014, 12, 4112–4116.
(32) For sulfoxonium ylides derived from ketones, see: (a) Ji,
S.; Yan, K.; Li, B.; Wang, B. Cp*Co(III)-Catalyzed C–H
Acylmethylation of Arenes by Employing Sulfoxonium Ylides as
Carbene Precursors. Org. Lett. 2018, 20, 5981–5984. (b) Xu, Y.;
Zheng, G.; Yang, X.; Li, X. Rhodium(III)-Catalyzed Chemodivergent
Annulations Between N-Methoxybenzamides and Sulfoxonium
Ylides via C–H Activation. Chem. Commun. 2018, 54, 670–673.
(33) Guimond, N.; Gorelsky, S. I.; Fagnou, K. Rhodium(III)-
Catalyzed Heterocycle Synthesis Using an Internal Oxidant:
Improved Reactivity and Mechanistic Studies. J. Am. Chem. Soc.
2011, 133, 6449–6457.
(34) Khan, M. A.; Nizami, S. S.; Qamar, T.; Rasheed, T.; Khan, M.
N. I.; Azeem, S. W. Heterocycles 1994, 38, 2005–2008.
(35) Pettit, G. R.; Meng, Y.; Herald, D. L.; Graham, K. A. N.; Pettit,
R. K.; Doubek, D. L. Isolation and Structure of Rupreschstyril from
Ruprechtia tangarana. J. Nat. Prod. 2003, 66, 1065–1069.
(36) Zhang, W.; Ames, B. D.; Tsai, S.-C.; Tang, Y. Engineered
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Biosynthesis of
a Novel Amidated Polyketide, Using the
Malonamyl-Specific Initiation Module from the Oxytetracycline
Polyketide Synthase. Appl. Environ. Microbiol. 2006, 72, 2573–
2580.
(37) Nadmid, S.; Plaza, A.; Lauro, G.; Garcia, R.; Bifulco, G.;
Müller, R. Hyalachelins A–C, Unusual Siderophores Isolated from
the Terrestrial Myxobacterium Hyalangium minutum. Org. Lett.
2014, 16, 4130–4133.
(38) Bentley, K. W. β-Phenylethylamines and the Isoquinoline
Alkaloids. Nat. Prod. Rep. 2003, 3, 342–365.
(39) Matsui, T.; Sugiura, T.; Nakai, H.; Iguchi, S.; Shigeoka, S.;
Takada, H.; Odagaki, Y.; Nagao, Y.; Ushio, Y.; Ohmoto, K.; Iwamura,
H.; Yamazaki, S.; Arai, Y.; Kawamura, M. Novel 5-HT3 Antagonists.
Isoquinolinones and 3-Aryl-2-Pyridones. J. Med. Chem. 1992, 35,
3307–3319.
(40) Busby, S. A.; Kumar, N.; Kuruvilla, D. S.; Istrate, M. A.;
Conkright, J. J.; Wang, Y.; Kamenecka, T. M.; Cameron, M. D.;
Roush, W. R.; Burris, T. P.; Griffin, P. R. Identification of a Novel
Non-Retinoid Pan Inverse Agonist of the Retinoic Acid Receptors.
ACS Chem. Biol. 2011, 6, 618–627.
(41) Li, S. W.; Nair, M. G.; Edwards, D. M.; Kisliuk, R. L.;
Gaumont, Y.; Dev, I. K.; Duch, D. S.; Humphreys, J.; Smith, G. K.;
Ferone, R. Folate Analogues. 35. Synthesis and Biological
Evaluation of 1-Deaza, 3-Deaza, and Bridge-Elongated Analogues
of N10-Propargyl-5,8-Dideazafolic Acid. J. Med. Chem. 1991, 34,
2746–2754.
(42) Chao, Q.; Deng, L.; Shih, H.; Leoni, L. M.; Genini, D.; Carson,
D. A.; Cottam, H. B. Substituted Isoquinolines and Quinazolines as
Potential Antiinflammatory Agents. Synthesis and Biological
Evaluation of Inhibitors of Tumor Necrosis Factor α. J. Med. Chem.
1999, 42, 3860–3873.
(43) Zhu, R.-Y.; Farmer, M. E.; Chen, Y.-Q.; Yu, J.-Q. A Simple and
Versatile Amide Directing Group for C–H Functionalizations.
Angew. Chem. Int. Ed. 2016, 55, 10578–10599.
(44) Subhedar, D. D.; Mishra, A. A.; Bhanage, B. M. N-
Methoxybenzamide: A Versatile Directing Group for Palladium-,
Rhodium- and Ruthenium-Catalyzed C–H Bond Activations. Adv.
Synth. Catal. 2019, 361, 4149–4195.
(45) Simmons, E. M.; Hartwig, J. F. On the Interpretation of
Deuterium Kinetic Isotope Effects in C–H Bond Functionalizations
by Transition-Metal Complexes. Angew. Chem. Int. Ed. 2012, 51,
3066–3072.
(46) Vásquez-Céspedes, S.; Wang, X.; Glorius, F. Plausible Rh(V)
Intermediates in Catalytic C–H Activation Reactions. ACS Catal.
2018, 8, 242–257.
(47) Li, Y.; Chen, H.; Qu, L.-B.; Houk, K. N.; Lan, Y. Origin of
Regiochemical Control in Rh(III)/Rh(V)-Catalyzed Reactions of
Unsaturated Oximes and Alkenes to Form Pyrdines. ACS Catal.
2019, 9, 7154−7165.
(26) Hara, Y.; Onodera, S.; Kochi, T.; Kakiuchi, F. Catalytic
Formation of α-Aryl Ketones by C–H Functionalization with Cyclic
Alkenyl Carbonates and One-Pot Synthesis of Isocoumarins. Org.
Lett. 2015, 17, 4850–4853.
(27) Yu, D.-G.; de Azambuja, F.; Glorius, F. α-MsO/TsO/Cl
Ketones as Oxidized Alkyne Equivalents: Redox-Neutral
Rhodium(III)-Catalyzed C–H Activation for the Synthesis of N-
Heterocycles. Angew. Chem. Int. Ed. 2014, 53, 2754–2758.
(28) For diazo compounds derived from β-ketoesters, see: (a)
Shi, Z.; Koester, D. C.; Boultadakis-Arapinis, M. Glorius, F. Rh(III)-
Catalyzed Synthesis of Multisubstituted Isoquinoline and Pyridine
N-Oxides from Oximes and Diazo Compounds. J. Am. Chem. Soc.
2013, 135, 12204–12207. (b) Cheng, Y.; Bolm, C. Regioselective
Syntheses of 1,2-Benzothiazines by Rhodium-Catalyzed
Annulation Reactions. Angew. Chem. Int. Ed. 2015, 54, 12349–
12352. (c) Li, X. G.; Sun, M.; Liu, K.; Jin, Q.; Liu, P. N. Rh(III)-
Catalyzed C–H Activation/Cyclization of Benzamides and Diazo
Compounds to Form Isocoumarins and α-Pyrones. Chem.
Commun. 2015, 51, 2380–2383. (d) Liang, Y.; Yu, K.; Li, B.; Xu, S.;
Song, H.; Wang, B. Rh(III)-Catalyzed Synthesis of 1-Aminoindole
Derivatives from 2-Acetyl-1-Arylhydrazines and Diazo
Compounds in Water. Chem. Commun. 2014, 50, 6130–6133.
(29) For α-diazomalonates, see: (a) Chan, W.-W.; Lo, S.-F.; Zhou,
Z.; Yu, W.-Y. Rh-Catalyzed Intermolecular Carbenoid
Functionalization of Aromatic C–H Bonds by α-Diazomalonates. J.
Am. Chem. Soc. 2012, 134, 13565–13568. (b) Zhao, D.; Kim, J. H.;
Stegemann, L.; Strassert, C. A.; Glorius, F. Cobalt(III)-Catalyzed
Directed C–H Coupling with Diazo Compounds: Straightforward
Access towards Extended π-Systems. Angew. Chem. Int. Ed. 2015,
54, 4508–4511. (c) Liu, X.-G.; Zhang, S.-S.; Wu, J.-Q.; Li, Q.; Wang, H.
Cp*Co(III)-Catalyzed Direct Functionalization of Aromatic C–H
Bonds with α-Diazomalonates. Tetrahedron Lett. 2015, 56, 4093–
4095. (d) Kim, J. H.; Greβies, S.; Glorius, F. Cooperative Lewis
Acid/Cp*CoIII Catalyzed C–H Bond Activation for the Synthesis of
Isoquinolin-3-ones. Angew. Chem. Int. Ed. 2016, 55, 5577–5581.
(30) For α-diazoketones, see: Halskov, K. S.; Roth, H. S.; Ellman,
J. A. Synthesis of [5,6]-Bicyclic Heterocycles with a Ring-Junction
Nitrogen Atom: Rhodium(III)-Catalyzed C–H Functionalization of
Alkenyl Azoles. Angew. Chem. Int. Ed. 2017, 56, 9183–9187.
(31) For α-diazoesters, see: (a) Hyster, T. K.; Ruhl, K. E.; Rovis,
T.
A Coupling of Benzamides and Donor/Acceptor Diazo
Compounds to Form γ-Lactams via Rh(III)-Catalyzed C–H
Activation. J. Am. Chem. Soc. 2013, 135, 5364–5367. (b) Ye, B.;
Cramer, N. Asymmetric Synthesis of Isoindolones by Chiral
Cyclopentadienyl-Rhodium(III)-Catalyzed C–H Functionalizations.
Angew. Chem. Int. Ed. 2014, 53, 7896–7899. (c) Lam, H.-W.; Man,
K.-Y.; Chan, W.-W.; Zhou, Z.; Yu, W.-Y. Rhodium(III)-Catalyzed
Formal Oxidative [4 + 1] Cycloaddition of Benzohydroxamic Acids
ACS Paragon Plus Environment