Journal of the American Chemical Society
Page 4 of 5
Soc. 2007, 129, 8976. (d) Czekelius, C.; Carreira, E. M. Angew.
tion of triphenylphosphine as a secondary ligand improved
catalyst turnover numbers without significantly impacting
the reaction rate or enantioselectivity of hydroamination,
thereby allowing a reduced loading of copper precatalyst and
chiral ligand to be used. Thus, we developed a slightly modi-
fied protocol for practical hydroamination reactions con-
ducted on large scale. A catalyst loading of 0.4 mol % proved
sufficient for reactions performed on 10 mmol scale using
commercially available (R)-limonene as the substrate
(Scheme 2).
1
2
3
4
5
6
7
8
Chem. Int. Ed. 2003, 42, 4793; (e) Mampreian, D. M.; Hoveyda, A.
H. Org. Lett. 2004, 6, 2829. (f) Côté, A.; Lindsay, V. N. G.; Cha-
rette, A. B. Org. Lett. 2007, 9, 85.
(3)
For reviews on hydroamination, see: (a) Müller, T. E.;
Hultzch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008,
108, 3795. (b) Nobis, M.; Drießen-Hölscher, B. Angew. Chem. Int.
Ed. 2001, 40, 3983.
(4)
For the asymmetric hydroamination of terminal alkyl
alkenes to form the respect branched amines, see: (a) Zhang, Z.
B.; Lee, S. D.; Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131,
5372; (b) Reznichenko, A. L.; Nguyen, H. N.; Hultzsch, K. A. An-
gew. Chem. Int. Ed. 2010, 49, 8984.
9
Scheme 2. Large-scale Hydroamination with Lower Cata-
lyst Loading
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5)
For transition metal-catalyzed intermolecular anti-
Markovnikov hydroamination reactions, see: (a) Beller, M.;
Trauthwein, H.; Eichberger, M.; Breindl, C.; Herwig, J.; Müller, T.
E.; Thiel, O. R. Chem. Eur. J. 1999, 5, 1306. (b) Utsunomiya, M.;
Kuwano, R.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2003,
125, 5608. (c) Ryu, J.-S.; Li, G. Y.; Marks, T. J. J. Am. Chem. Soc.
2003, 125, 12584. (d) Utsunomiya, M.; Hartwig, J. F. J. Am. Chem.
Soc. 2004, 126, 2702. (e) Takaya, J.; Hartwig, J. F. J. Am. Chem.
Soc. 2005, 127, 5756. (f) Munro-Leighton, C.; Delp, S. A.; Alsop,
N. M.; Blue, E. D.; Gunnoe, T. B. Chem. Commun. 2008, 111. (g)
Barrett, A. G. M.; Brinkmann, C.; Crimmin, M. R.; Hill, M. S.;
Hunt, P.; Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 12906. (h)
Brinkmann, C.; Barrett, A. G. M.; Hill, M. S.; Procopiou, P. A. J.
Am. Chem. Soc. 2012, 134, 2193. For one-pot two-step procedures,
see: (i) Rucker, R. P.; Whittaker, A. M.; Dang, H.; Lalic, G. J. Am.
Chem. Soc. 2012, 134, 6571. (j) Bronner, S. M.; Grubbs, R. H.;
Chem. Sci. 2014, 5, 101.
In conclusion, we have described a mild catalytic process
for the synthesis of
β-chiral amines by asymmetric anti-
Markovnikov hydroamination of 1,1-disubstituted alkenes.
This versatile method tolerated a wide range of functional
groups on the alkene component and was compatible with
heterocycle-containing and sterically hindered aminating
reagents. This approach was further applied to the stereose-
lective synthesis of
β-deuterated amines. The amount of
catalyst required could be reduced by the addition of tri-
phenylphosphine as an inexpensive secondary ligand, further
enhancing the practicality of this system for large-scale syn-
thesis. The application of this protocol towards the synthesis
of pharmaceutical agents and natural products is currently
underway and will be reported in due course.
(6)
For intermolecular anti-Markovnikov hydroamination
reactions using group 1 and 2 alkylmetal bases, see: (a) Kumar,
K.; Michalik, D.; Castro, I. G.; Tillack, A.; Zapf, A.; Arlt, M.; Hein-
rich, T.; Böttcher, H.; Beller, M. Chem. Eur. J. 2004, 10, 746. (b)
Horrillo-Martínez, P.; Hultzsch, K. C.; Gil, A.; Branchadell, V.;
Eur. J. Org. Chem. 2007, 331. (c) Zhang, X.; Emge, T. J.; Hultzsch,
K. C. Angew. Chem. Int. Ed. 2012, 51, 394. For intermolecular anti-
Markovnikov hydroamination reactions based on radical pro-
cesses, see: (d) Guin, J.; Mück-Lichtenfeld, C.; Grimme, S.; Stu-
der, A. J. Am. Chem. Soc. 2007, 129, 4498. (e) Nguyen, T. M.;
Manohar, N.; Nicewicz, D. A. Angew. Chem. Int. Ed. 2014, 53,
6198.
ASSOCIATED CONTENT
Experimental procedures, characterization data for all com-
pounds, and crystallographic data of 3x (CIF). This material
is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
(7)
(a) Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am.
Chem. Soc. 2013, 135, 15746. For a related system for the asym-
metric hydroamination of styrene derivatives, see: (b) Miki, Y.;
Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52,
10830. See also: (c) Hesp, K. D. Angew. Chem. Int. Ed. 2014, 53,
2034.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
(8)
For leading references on various electrophilic amine
Research reported in this publication was supported by the
National Institutes of Health under award number GM58160.
The content of this publication is solely the responsibility of
the authors and does not necessarily represent the official
views of the National Institutes of Health. We would like to
thank Christina Kraml (Lotus Separations, LLC) for deter-
mining the enantiopurity of 3f by chiral SFC and Dr. Yi-Ming
Wang and Phillip J. Milner for their advice on the prepara-
tion of this manuscript.
sources and their applications, see: (a) Berman, A. M.; Johnson, J.
S. J. Am. Chem. Soc. 2004, 126, 5680; (b) Erdik, E.; Ay M. Chem.
Rev. 1989, 89, 1947; (c) Barker, T. J.; Jarvo, E. R. Synthesis 2011,
3958.
(9)
Thomas, S. P.; Aggarwal, V. K. Angew. Chem. Int. Ed.
2009, 48, 1896.
(10)
For asymmetric hydrogenation, see: (a) McIntyre, S.;
Hörmann, E.; Menges, F.; Smidt, S. P.; Pfaltz, A. Adv. Synth.
Catal. 2005, 347, 282. (b) Roseblade, S. J.; Pfaltz, A. Acc. Chem.
Res. 2007, 40, 1402. For asymmetric epoxidation, see: (c) Xia, Q.-
H.; Ge, H.-Q.; Ye, C.-P.; Liu, Z.-M.; Su, K.-X. Chem. Rev. 2005,
105, 1603. (d) Wang, B.; Wong, O. A.; Zhao, M. -X.; Shi, Y. J. Org.
Chem. 2008, 73, 9539. For asymmetric hydroboration, see: (e)
Gonzalez, A. Z.; Román, J. G.; Gonzalez, E.; Martinez, J.; Medina,
J. R.; Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2008, 130,
9218. (f) Corberán, R.; Mszar, N. W.; Hoveyda, A. H. Angew.
Chem. Int. Ed. 2011, 50, 7079.
REFERENCES
(1)
For a review of methods for the enantioselective syn-
thesis of amines, see: Chiral Amine Synthesis; Nugent, T. C., Ed.;
Wiley-VCH: Weinheim, Germany, 2010.
(2)
(a) Lu, Z.; Wilsily, A.; Fu, G. C. J. Am. Chem. Soc. 2011,
133, 8154. (b) Enders, V. D.; Schubert, H.; Angew. Chem. Int. Ed.
1984, 23, 365. (c) Martin, N. J. A.; Ozores, L.; List, B. J. Am. Chem.
ACS Paragon Plus Environment