Journal of the American Chemical Society
Page 4 of 5
(4) For homogeneous dehydrogenation and hydrogenation of tetrahy-
In summary, we have demonstrated reversible dehydrogena-
tion-hydrogenation of N-heterocycles with inexpensive and earth-
abundant iron-based molecular catalysts. Products from both the
dehydrogenation and hydrogenation reactions were isolated in
good yields. The penta-coordinated iron hydride species 3, the
proposed dehydrogenation intermediate, was isolated by an inde-
pendent route and its direct involvement in the catalysis was
demonstrated. Substrate-driven mechanistic studies support the
initial amine-dehydrogenation step and provide evidence against
direct alkane dehydrogenation from the partially oxidized N-
heterocycles. The presence of the N-atom seems to be critical for
a successful catalytic dehydrogenation. On the other hand, a
trans-dihydride species (4) was invoked as the active catalyst for
the hydrogenation of N-heterocycles. NMR and trapping experi-
ments support the formation of such a species. Currently, our
efforts are focused on further understanding the reaction mecha-
nism and a detailed study will be reported in the future. We are
also applying these iron complexes as efficient catalysts for the
dehydrogenation of other organic substrates and these studies are
forthcoming.
droquinolines and quinolines see: (a) Yamaguchi, R.; Ikeda, C.;
Takahashi, T.; Fujita, K.-I. J. Am. Chem. Soc. 2009, 131, 8410. (b) Li, H.;
Jiang, J.; Lu, G.; Huang, F.; Wang, Z.-X. Organometallics 2011, 30, 3131.
(c) Zhang, X.-B.; Xi, Z. Phys. Chem., Chem. Phys. 2011, 13, 3997. (d)
Wu, J.; Talwar, D.; Johnston, S.; Yan, M.; Xiao, J. Angew. Chem. Int. Ed.
2013, 52, 6983. (e) Luca, O.; Huang, D. L.; Takase, M. K.; Crabtree, R. H.
New J. Chem. 2013, 37, 3402.
(5) For catalytic dehydrogenation of other N-heterocycles see: (a) (b)
Tsuji, Y.; Kotachi, S.; Huh, K. T.; Watanabe, Y. J. Org. Chem. 1990, 55,
580. (b) (b) Hara, T.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K.
Tetrahedron Lett. 2003, 44, 6207. (c) Dean, D.; Davis, B.; Jessop, P. G.
New J. Chem. 2011, 35, 417.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6) Fujita, K.-I.; Tanaka, Y.; Kobayashi, M.; Yamaguchi, R. J. Am.
Chem. Soc. 2014, 136, 4829.
(7) For iron-based catalysts in hydrogenation and dehydrogenation see:
(a) Iron Catalysis in Organic Chemistry: Reactions and Applications, ed.
Bernd Plietker, Wiley-VCH, Weinheim, 2008. (b) Nakazawa, H.; Itazaki,
M. Top. Organomet. Chem. 2011, 33, 27 and references therein. (c) Dar-
wish, M.; Wills, M. Catal. Sci. Technol. 2012, 2, 243 and references there-
in. (d) Morris, R. H. Chem. Soc. Rev. 2009, 38, 2282 and references
therein.
(8) Alberico, E.; Sponholz, P.; Cordes, C.; Nielsen, M.; Drexler, H.-J.;
Baumann, W.; Junge, H.; Beller, M. Angew. Chem. Int. Ed. 2013, 52,
14162.
(9) Koehne, I.; Schmeier, T. J.; Bielinski, E. A.; Pan, J. C., Lagaditis, P.
O.; Bernskoetter, W. H.; Takase, M. K.; Wurtle, C.; Hazari, N.; Schneider,
S. Inorg. Chem. 2014, 53, 2133.
(10) Chakraborty, S.; Dai. H.; Bhattacharya, P.; Fairweather, N. T.;
Gibson, M. S.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2014, 136,
ASAP, DOI: 10.1021/ja504034q. Provisional US patent application with
a serial number of 61/972927, 2014.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, product characterization data, and X-
ray crystallographic data for 3 (CCDC#1001232) are included.
This material is free of charge via the internet at
(11) Yamaguchi and coworkers have reported similar sharp increase in
yields when they switched the solvent from toluene to p-xylene. See refer-
ence 4a.
AUTHOR INFORMATION
(12) (a) Widegren, J. A.; Finke, R. G. J. Mol. Catal. A: Chem. 2003,
198, 317. (b) Crabtree, R. H. Chem. Rev. 2012, 112, 1536. It should be
noted that Hg(l) does not always inhibit iron nanoparticle catalysts. See:
(c) Sonnenberg, J. F.; Coombs, N.; Dube, P. A.; Morris, R. H. J. Am.
Chem. Soc. 2012, 134, 5893. 5899 (d) Bedford, R. B.; Betham, M.; Bruce,
D. W.; Davis, S. A.; Frost, R. M.; Hird, M. Chem. Commun. 2006, 1398.
(e) Rangheard, C.; Fernández, C. J.; Phua, P.-H.; Hoorn, J.; Lefort. L.; de
Vries, J. G. Dalton Trans., 2010, 39, 8464.
(13) When 5 mol% of free PNP ligand was added with 1 mol% of cata-
lyst 1 (conditions of entry 5 in Table 1), 92% conversion of tetrahydroqui-
naldine was observed after 30 hours. Without the added free ligand, only
34% conversion was achieved after 30 hours under these conditions. If
iron nanoparticles are being generated, one would not expect to see such a
significant difference between these two experiments. Furthermore, a
PMe3 poisoning experiment was not conducted as complex 1 itself de-
composed in the presence of excess of PMe3 and therefore, the result from
this experiment would be inconclusive.
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was funded by the Center for Electrocatalysis,
Transport Phenomena, and Materials (CETM) for Innovative
Energy Storage, an Energy Frontier Research Center funded by
the U.S. Department of Energy, and the ESD NYSTAR program.
S.C. would like to thank James Kovach (University of Rochester)
for helpful discussion on the dehydrogenation mechanism.
(14) Yamaguchi and coworkers reported similar dual experiments in
their studies. See references 4a and 6.
REFERENCES
(15) For hydrogenation of N-heterocycles see: (a) Dobereiner, G. E.;
Nova, A.; Schley, N. D.; Hazari, N.; Miller, S. J.; Eisenstein, O.; Crabtree,
R. H. J. Am. Chem. Soc. 2011, 133, 7547 and references cited therein. (b)
Wu, J.; Barnard, J. H.; Zhang, Y.; Talwar, D.; Robertson, C. M.; Xiao, J.
Chem. Commun. 2013, 49, 7052 and references cited therein. For hydro-
genation of imines see: Lagaditis, P. O.; Sues, P. E.; Sonnenberg, J. F.;
Wan, K. Y.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2014, 136,
1367.
(16) Complex 3 was also proposed to be the active catalytic intermedi-
ate in Beller’s methanol dehydrogenation chemistry (see reference 7); but
no experimental evidence for the formation of such a species was provided
in that report.
(1) (a) Eberle, U.; Felderhoff, M.; Schüth, F. Angew. Chem. Int. Ed.
2009, 48, 6608. (b) Sartbaeva, A.; Kuznetsov, V. L.; Wells, S. A.;
Edwards, P. P. Energy Environ. Sci. 2008, 1, 79. (c) Makowski, P.;
Thomas, A.; Kuhn, P.; Goettmann, P. Energy Environ. Sci. 2009, 2, 480.
(d) Teichmann, D.; Arlt, W.; Wasserscheid, P.; Freymann, R. Energy
Environ. Sci. 2011, 4, 2767. (e) Armaroli, N.; Balzani, V. ChemSusChem
2011, 4, 21. (f) Fukuzumi, S.; Suenobu, T. Dalton Trans. 2013, 42, 18.
(2) (a) Crabtree, R. H. Energy Environ. Sci. 2008, 1, 134 and references
cited therein. (b) Jessop, P. Nat. Chem. 2009, 1, 350 and references cited
therein. (c) Watson, L. A.; Eisenstein, O. J. J. Chem. Educ. 2002, 79,
1269.
(3) (a) Adkins, H.; Lundsted, L. G. J. Am. Chem. Soc. 1949, 71, 2964.
(b) Lu, S. M.; Wang, Y. Q.; Han, X. W.; Zhou, Y. G. Chin. J. Catal. 2005,
26, 287. (c) Wang, Z.; Tonks, I.; Belli, J.; Jensen, C. M. J. Organomet.
Chem. 2009, 694, 2854. (d) Mikami, K.; Ebata, K.; Mistudome, T.; Mi-
zugaki, T.; Jitsukawa, K.; Kaneda, K. Heterocycles 2011, 82, 1371. (e)
Sotoodeha, F.; Huberb, B. J. M.; Smith, K. J. Appl. Catal., A, 2012, 420,
67.
(17) For a comprehensive review on alkane dehydrogenation see: Choi,
J.; MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S. Chem. Rev. 2011,
111, 1761.
(18) Kerr, J. A. Chem. Rev. 1966, 66, 465.
ACS Paragon Plus Environment
4