Catalysis Science & Technology
Paper
particularly ‘green’. The catalytic system can be reused at
least ten times without any loss of catalytic activity. These
results render compound 10 as a viable catalyst for CO2 fixa-
tion with respect to a low carbon footprint. With the right
choice of the substitution pattern at the imidazolium ring,
the solubility towards CO2 is enhanced. The effect of ‘wingtip’
substituents at the imidazolium ring on the acidity (and hence
on the epoxide ring activation) on one hand and the ion
pairing effect on the halide nucleophilicity on the other hand
has been investigated. Further research efforts should focus
on experimental and theoretical studies of the interplay
between the hydrogen bonding, the acidity of the imidazolium
salts, and the electronic and steric effects of the substituents,
as well as on studies of the influence of CO2 solubility on
the catalytic activity. These studies aim at the development
of ionic liquids with tailor-made cations, which should
further facilitate the cycloaddition, allowing for a decrease
of the reaction temperature below 70 °C (down to room tem-
perature) and thus helping to minimize the carbon footprint
for this reaction.
14 D. J. Darensbourg, Chem. Rev., 2007, 107, 2388–2410.
15 M. R. Kember, A. Buchard and C. K. Williams, Chem. Commun.,
2011, 47, 141–163.
16 X.-B. Lu and D. J. Darensbourg, Chem. Soc. Rev., 2012, 41,
1462–1484.
17 X.-B. Lu, W.-M. Ren and G.-P. Wu, Acc. Chem. Res., 2012, 45,
1721–1735.
18 C. Chatterjee and M. H. Chisholm, Chem. Rec., 2013, 13,
549–560.
19 Z.-Z. Yang, Y.-N. Zhao and L.-N. He, RSC Adv., 2011, 1,
545–567.
20 Y. J. Kim and R. S. Varma, J. Org. Chem., 2005, 70,
7882–7891.
21 J. Sun, S.-I. Fujita and M. Arai, J. Organomet. Chem., 2005,
690, 3490–3497.
22 M. H. Anthofer, M. E. Wilhelm, M. Cokoja and F. E. Kühn,
in Transformation and Utilization of Carbon Dioxide,
ed. B. M. Bhanage and M. Arai, Springer, in print.
23 Q. He, J. O'Brien, K. Kitselman, L. Tompkins, G. Curtis and
F. M. Kerton, Catal. Sci. Technol., 2014, DOI: 10.1039/C3CY00998J.
24 J. Roeser, K. Kailasam and A. Thomas, ChemSusChem, 2012,
5, 1793–1799.
25 Z.-Z. Yang, L.-N. He, C.-X. Miao and S. Chanfreau, Adv.
Synth. Catal., 2010, 352, 2233–2240.
26 Y. Xiong, H. Wang, R. Wang, Y. Yan, B. Zheng and Y. Wang,
Chem. Commun., 2010, 46, 3399–3401.
Acknowledgements
MHA, MEW and IIEM thank the TUM Graduate School for
financial support.
27 L. Han, H.-J. Choi, D.-K. Kim, S.-W. Park, B. Liu and
D.-W. Park, J. Mol. Catal. A: Chem., 2011, 338, 58–64.
28 L. Han, H. Li, S.-J. Choi, M.-S. Park, S.-M. Lee, Y.-J. Kim and
D.-W. Park, Appl. Catal., A, 2012, 429–430, 67–72.
29 K. Motokura, S. Itagaki, Y. Iwasawa, A. Miyaji and T. Baba,
Green Chem., 2009, 11, 1876–1880.
30 T. Sakai, Y. Tsutsumi and T. Ema, Green Chem., 2008, 10,
337–341.
31 Y. Xie, Z. Zhang, T. Jiang, J. He, B. Han, T. Wu and K. Ding,
Angew. Chem., Int. Ed., 2007, 46, 7255–7258.
32 J. Sun, S. Zhang, W. Cheng and J. Ren, Tetrahedron Lett.,
2008, 49, 3588–3591.
Notes and references
1 M. Peters, B. Köhler, W. Kuckshinrichs, W. Leitner, P. Markewitz
and T. E. Müller, ChemSusChem, 2011, 4, 1216–1240.
2 N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo,
G. Jackson, C. S. Adjiman, C. K. Williams, N. Shah and P. Fennell,
Energy Environ. Sci., 2010, 3, 1645–1669.
3 M. Mikkelsen, M. Jorgensen and F. C. Krebs, Energy Environ.
Sci., 2010, 3, 43–81.
4 P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen,
P. Zapp, R. Bongartz, A. Schreiber and T. E. Muller, Energy
Environ. Sci., 2012, 5, 7281–7305.
5 E. A. Quadrelli, G. Centi, J.-L. Duplan and S. Perathoner,
ChemSusChem, 2011, 4, 1194–1215.
33 Y.-M. Shen, W.-L. Duan and M. Shi, Eur. J. Org. Chem., 2004,
2004, 3080–3089.
6 M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann and
F. E. Kühn, Angew. Chem., Int. Ed., 2011, 50, 8510–8537.
7 M. Drees, M. Cokoja and F. E. Kühn, ChemCatChem, 2012, 4,
1703–1712.
34 Y.-M. Shen, W.-L. Duan and M. Shi, Adv. Synth. Catal., 2003,
345, 337–340.
35 C. J. Whiteoak, A. Nova, F. Maseras and A. W. Kleij,
ChemSusChem, 2012, 5, 2032–2038.
8 T. Sakakura and K. Kohno, Chem. Commun., 2009, 1312–1330.
9 W.-L. Dai, S.-L. Luo, S.-F. Yin and C.-T. Au, Appl. Catal., A,
2009, 366, 2–12.
10 S. Fukuoka, M. Kawamura, K. Komiya, M. Tojo, H. Hachiya,
K. Hasegawa, M. Aminaka, H. Okamoto, I. Fukawa and
S. Konno, Green Chem., 2003, 5, 497–507.
36 J. Sun, L. Han, W. Cheng, J. Wang, X. Zhang and S. Zhang,
ChemSusChem, 2011, 4, 502–507.
37 J.-Q. Wang, K. Dong, W.-G. Cheng, J. Sun and S.-J. Zhang,
Catal. Sci. Technol., 2012, 2, 1480–1484.
38 I. I. E. Markovits, W. A. Eger, S. Yue, M. Cokoja,
C. J. Münchmeyer, B. Zhang, M.-D. Zhou, A. Genest, J. Mink,
S.-L. Zang, N. Rösch and F. E. Kühn, Chem. – Eur. J., 2013,
19, 5972–5979.
11 A. Decortes, A. M. Castilla and A. W. Kleij, Angew. Chem., Int. Ed.,
2010, 49, 9822–9837.
12 S. Klaus, M. W. Lehenmeier, C. E. Anderson and B. Rieger,
Coord. Chem. Rev., 2011, 255, 1460–1479.
13 M. North, R. Pasquale and C. Young, Green Chem., 2010, 12,
1514–1539.
39 M. Lee, U. H. Choi, S. Wi, C. Slebodnick, R. H. Colby and
H. W. Gibson, J. Mater. Chem., 2011, 21, 12280–12287.
40 M. Debdab, F. Mongin and J. P. Bazureau, Synthesis, 2006,
4046–4052.
This journal is © The Royal Society of Chemistry 2014
Catal. Sci. Technol., 2014, 4, 1749–1758 | 1757