Paper
Dalton Transactions
3
7.47–7.44 (m, 4H), 7.32–7.25 (m, 1H), 2.05 (sept, 2H, JHH
7 Hz), 1.13 (d, 6H, 3JHH = 7 Hz), 1.06 (d, 6H, 3JHH = 7 Hz).
=
H. Schmidbaur, Organometallics, 2005, 24, 3547–3551;
(c) C. Hirtenlehner, C. Krims, J. Hölbling, M. List, M. Zabel,
M. Fleck, R. J. F. Berger, W. Schoefberger and
U. Monkowius, Dalton Trans., 2011, 40, 9899–9910.
8 S. Orbisaglia, B. Jacques, P. Braunstein, D. Hueber, P. Pale,
A. Blanc and P. de Frémont, Organometallics, 2013, 32,
4153–4164.
9 (a) H. J. Lucas and E. R. Kennedy, Org. Synth., 1955, Coll.
Vol. 3, 482; (b) A. Zanka, H. Takeuchi and A. Kubota, Org.
Process Res. Dev., 1998, 2, 270–273.
Acknowledgements
We thank Prof. Benno Bildstein (University Innsbruck) and
Dr I. Abfalter (JKU) for valuable suggestions. The authors
thank Prof. G. Knör and the JKU for continuous and generous
support of the experimental work. The NMR spectrometers
were acquired in collaboration with the University of South 10 (a) N. Schneider, S. Bellemin-Laponnaz, H. Wadepohl and
Bohemia (CZ) with financial support from the European
Union (EU) through the EFRE INTERREG IV ETC-AT-CZ pro-
gramme (project number M00146, “RERI-uasb”).
L. H. Gade, Eur. J. Inorg. Chem., 2008, 5587–5598;
(b) L. H. Gade, G. Marconi, C. Dro, B. D. Ward, M. Poyatos,
S. Bellemin-Laponnaz, H. Wadepohl, L. Sorace and
G. Poneti, Chem. – Eur. J., 2007, 13, 3058–3075.
11 M. Kriechbaum, J. Hölbling, H.-G. Stammler, M. List,
R. J. F. Berger and U. Monkowius, Organometallics, 2013,
32, 2876–2884.
References
1 H. Schmidbaur and A. Schier, Arab. J. Sci. Eng., 2012, 37, 12 U. Monkowius, M. Zabel and H. Yersin, Inorg. Chem.
1187–1225. Commun., 2008, 11, 409–412.
2 (a) M. N. Hopkinson, A. D. Gee and V. Gouverneur, Chem. – 13 C. Burstein, C. W. Lehmann and F. Glorius, Tetrahedron,
Eur. J., 2011, 17, 8248–8262; (b) T. de Haro and C. Nevado,
J. Am. Chem. Soc., 2010, 135, 1512–1513.
3 (a) C. Bronner and O. S. Wenger, Dalton Trans., 2011, 40,
12409–12420; (b) V. W.-W. Yam and K. M. C. Wong, Chem.
Commun., 2011, 47, 11579–11592.
2005, 61, 6207–6217.
14 (a) P. de Frémont, R. Singh, E. D. Stevens, J. L. Petersen
and S. P. Nolan, Organometallics, 2007, 26, 1376–1385;
(b) J. Lemke, A. Pinto, P. Niehoff, V. Vasylyeva and
N. Metzler-Nolte, Dalton Trans., 2009, 7063–7070;
(c) C. Topf, C. Hirtenlehner, M. Fleck, M. List and
U. Monkowius, Z. Anorg. Allg. Chem., 2011, 637, 2129–2134.
4 (a) M. Kriechbaum, M. List, R. J. F. Berger, M. Patzschke
and U. Monkowius, Chem. – Eur. J., 2012, 18, 5506–5509;
(b) M. Kriechbaum, G. Winterleitner, A. Gerisch, M. List 15 (a) H. Isci and W. R. Mason, Inorg. Chem., 1983, 22, 2266–
and U. Monkowius, Eur. J. Inorg. Chem., 2013, 5567–
5575.
5 (a) V. K.-M. Au, N. Zhu and V. W.-W. Yam, Inorg. Chem.,
2272; (b) W. R. Mason III and H. B. Gray, Inorg. Chem.,
1968, 7, 55–58; (c) W. R. Mason and H. B. Gray, J. Am.
Chem. Soc., 1968, 90, 5721–5729.
2013, 52, 558–567; (b) W.-P. To, K. T. Chan, G. S. M. Tong, 16 T. S. Teets and D. G. Nocera, J. Am. Chem. Soc., 2009, 131,
C. Ma, W.-M. Kwok, X. Guan, K.-H. Low and C.-M. Che, 7411–7420.
Angew. Chem., Int. Ed., 2013, 52, 6648–6652; 17 (a) C. Topf, C. Hirtenlehner, M. Zabel, M. List, M. Fleck
(c) A. Szentkuti, M. Bachmann, J. A. Garg, O. Blacque and
K. Venkatesan, Chem. – Eur. J., 2014, 20, 2585–2596;
(d) Y. Tanaka, K. M.-C. Wong and V. W.-W. Yam, Chem. Sci.,
and U. Monkowius, Organometallics, 2011, 30, 2755–2764;
(b) C. Topf, C. Hirtenlehner and U. Monkowius, J. Organo-
met. Chem., 2011, 696, 3274–3278.
2012, 3, 1185–1191; (e) W.-P. To, G. S. M. Tong, W. Lu, 18 D. G. Gusev, Organometallics, 2009, 28, 6458–6461.
C. Ma, J. Liu, A. L.-F. Chow and C.-M. Che, Angew. Chem., 19 H. Mäuser, Z. Naturforsch., 1968, 23b, 1021–1025.
Int. Ed., 2012, 51, 2654–2657; (f) D. A. Smith, D. A. Roşca 20 Handbuch der Präparativen Anorganischen Chemie, Band 2,
and M. Bochmann, Organometallics, 2012, 31, 5998–6000;
(g) R. Muñoz-Rodríguez, E. Buñuel, J. A. G. Williams and
ed. G. Brauer, Ferdinand Enke Verlag, Stuttgart, 3rd edn,
1978, p. 998.
D. J. Cárdenas, Chem. Commun., 2012, 48, 5980–5982; 21 R. Uson, A. Laguna, M. Laguna, D. A. Briggs, H. H. Murray
(h) D. A. Roşca, D. A. Smith and M. Bochmann, Chem. and J. P. Fackler Jr., Inorg. Syn., 1989, 26, 85–91.
Commun., 2012, 48, 7247–7249; (i) W. Lu, K. T. Chan, 22 E. Marchi, R. Sinisi, G. Bergamini, M. Tragni, M. Monari,
S.-X. Wu, Y. Chen and C.-M. Che, Chem. Sci., 2012, 3, 752–
M. Bandini and P. Ceroni, Chem. – Eur. J., 2012, 18, 8765–
755.
8773.
6 (a) Gold Chemistry: Applications and Future Directions in the 23 G. M. Sheldrick, SHELXS-97, Program for the Solution of
Life Sciences, ed. F. Mohr, Wiley-VCH, Weinheim, 2009;
(b) Gold Progress in Chemistry, Biochemistry and Technology,
ed. H. Schmidbaur, Wiley, Chichester, 1999; (c) Modern
Crystal Structures, Göttingen, Germany, 1997. See also:
G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystal-
logr., 1990, 46, 467–473.
Gold Catalyzed Synthesis, ed. A. S. K. Hashmi and 24 G. M. Sheldrick, SHELXL-97, Program for crystal structure
F. D. Toste, Wiley-VCH, Weinheim, 2012.
7 (a) D. Schneider, A. Schier and H. Schmidbaur, Dalton
Trans., 2004, 1995–2005; (b) D. Schneider, O. Schuster and
refinement, Göttingen, Germany, 1997. See also:
G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystal-
logr., 2008, 64, 112–122.
8790 | Dalton Trans., 2014, 43, 8781–8791
This journal is © The Royal Society of Chemistry 2014