Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Biotechnol., 2001, 19, 253.
This amplification method could also be translated to
amplifying the loading density of radioisotopes.22 As a proof of
concept, P5-Her was pre-labelled with Tz3 (Fig. 2a and S11,
Scheme S6) bearing Cu(II) on a DOTA ligand (copper was used
as a model as 64Cu is widely used in nuclear medicine23). The
amplified metal loading on SK-BR-3 cells was confirmed by
inductively coupled plasma-mass spectrometry (ICP-MS) where
the Cu(II) loaded polymer–antibody conjugate Cu-P5-Her
showed a 6-fold higher copper loading (1.6 pg/cell) in
comparison to the conventionally radiolabelled antibody Cu-
Her (Fig. S14, Scheme S7).
In summary, a linear poly(acrylamide) scaffold bearing
norbornenes and a His-Tag was synthesised, conjugated to a
clinically used antibody Herceptin, and used for fluorescence
and metal amplification. Compared to the standard small
molecule fluorophore labelled antibody, the polymer–antibody
conjugates gave up to an 83-fold increase in fluorescence
without affecting antibody binding. This approach of receptor
targeted polymer conjugates enables simultaneous “switch-
on” and amplification of fluorescent signal with possible
contributions to fluorescence-guided surgery and other
fluorescence-based applications, especially those where
signals are inherently weak due to low numbers of receptors.
The approach was applied to the amplification of metal loading
with possible uses in nuclear medicine, but the designed
polymer scaffold would also enable the “multiplication” of
other molecules (e.g. drugs). The new His-Tag-RAFT agent
provides a powerful new approach to access various functional
polymers with an endogenous purification handle to enable
the rapid and simple purification of both “graft-to” or “graft-
from” polymer–conjugates.
5
6
M. E. Tanenbaum, L. A. Gilbert, L. S. QiD, OJ.I:S1.0W.10e3is9s/Dm0aCnC,0R4.5D91.H
Vale, Cell, 2014, 159, 635.
C. M. Soto, A. S. Blum, G. J. Vora, N. Lebedev, C. E. Meador,
A. P. Won, A. Chatterji, J. E. Johnson, B. R. Ratna, J. Am.
Chem. Soc., 2006, 128, 5184.
7
8
J. Park, Y. Park, S. Kim, ACS nano, 2013, 7, 9416.
D. Duret, Z. Haftek-Terreau, M. Carretier, T. Berki, C.
Ladavière, K. Monier, P. Bouvet, J. Marvel, Y. Leverrier, M. T.
Charreyre, A. Favier, Polym. Chem., 2018, 9, 1857; L. Zhang,
W. Zhao, X. Liu, G. Wang, Y. Wang, D. Li, L. Xie, Y. Gao, H.
Deng, W. Gao, Biomaterials, 2015, 64, 2; H. N. Kim, Z. Guo,
W. Zhu, J. Yoon, H. Tian, Chem. Soc. Rev., 2011, 40, 79; H. J.
Avens, C. N. Bowman, Acta Biomater., 2010, 6, 83; B. Allo, X.
Lou, A. Bouzekri, O. Ornatsky, Bioconjugate Chem. 2018, 29
,
2028; T. Berki, A. Bakunts, D. Duret, L. Fabre, C. Ladaviere, A.
Orsi, M.-T. Charreyre, A. Raimondi, E. van Anken, A. Favier,
ACS Omega 2019, 4, 12841.
9
Y. Wang, C. Wu, Biomacromolecules, 2018, 19, 1804.
10 J. Xu, K. Jung, N. A. Corrigan, C. Boyer, Chem. Sci., 2014,
5
,
3568; I. Cobo, M. Li, B. S. Sumerlin, S. Perrier, Nat. Mater.,
2015, 14, 143; J. Liu, V. Bulmus, D. L. Herlambang, C. Barner-
Kowollik, M. H. Stenzel, T. P. Davis, Angew. Chem. Int. Ed.,
2007, 46, 3099.
11 J. M. Paloni, E. A. Miller, H. D. Sikes, B. D. Olsen,
Biomacromolecules, 2018, 19, 3814; J. Morgenstern, G. Gil
Alvaradejo, N. Bluthardt, A. Beloqui, G. Delaittre, J. R.
Hubbuch, Biomacromolecules, 2018, 19, 4250.
12 M. Schuster, C. Turecek, B. Kaiser, J. Stampfl, R. Liska, F.
Varga, J. Macromol. Sci., Part A: Pure Appl. Chem., 2007, 44
547.
,
13 J. Hentschel, K. Bleek, O. Ernst, J. F. Lutz, H. G. Börner,
Macromolecules, 2008, 41, 1073.
14 A. Wieczorek, T. Buckup, R. Wombacher, Org. Biomol. Chem.,
2014, 12, 4177.
15 J. C. Carlson, L. G. Meimetis, S. A. Hilderbrand, R.
Weissleder, Angew. Chem. Int. Ed., 2013, 52, 6917.
16 A. Wieczorek, P. Werther, J. Euchner, R. Wombacher, Chem.
We thank European Research Council (ADREEM ERC-2013-
340469) for funding and Dr L. Eades for assistance with ICP-
MS.
Sci., 2017, 8, 1506.
17 G. Linden, L. Zhang, F. Pieck, U. Linne, D. Kosenkov, R.
Tonner, O. Vazquez, Angew. Chem. Int. Ed., 2019, 58, 12868.
18 H. Wu, N. K. Devaraj, Acc. Chem. Res., 2018, 51, 1249; L. G.
Meimetis, J. C. Carlson, R. J. Giedt, R. H. Kohler, R.
Conflicts of interest
There are no conflicts to declare.
Weissleder, Angew. Chem., 2014, 126, 7661-7664; Y. Lee, W.
Cho, J. Sung, E. Kim, S. B. Park, J. Am. Chem. Soc., 2017, 140
974; E. Kozma, O. Demeter, P. Kele, ChemBioChem, 2017, 18
486.
,
,
19 R. Sen, D. Gahtory, J. Escorihuela, J. Firet, S. P. Pujari, H.
Zuilhof, Chem. Eur. J., 2017, 23, 13015.
Notes and references
20 C. A. Hudis, New Engl. J. Med., 2007, 357, 39.
21 Y. Urano, D. Asanuma, Y. Hama, Y. Koyama, T. Barrett, M.
Kamiya, T. Nagano, T. Watanabe, A. Hasegawa, P. L. Choyke,
Nat. Med., 2009, 15, 104; J. B. Haun, N. K. Devaraj, S. A.
Hilderbrand, H. Lee, R. Weissleder, Nat. Nanotechnol., 2010,
1
2
L. Lan, Q. Guo, H. Nie, C. Zhou, Q. Cai, J. Huang, X. Meng,
Chem. Sci., 2019, 10, 2034; Y. Wang, C. Liu, X. Zhang, W.
Yang, F. Wu, G. Zou, X. Weng, X. Zhou, Chem. Sci., 2018,
3723; P. V. Robinson, C. Tsai, A. E. de Groot, J. L. McKechnie,
C. R. Bertozzi, J. Am. Chem. Soc., 2016, 138, 10722; T. Sano,
C. L. Smith, C. R. Cantor, Science, 1992, 258, 120.
9
,
5
, 660.
22 N. A. Thiele, V. Brown, J. M. Kelly, A. Amor-Coarasa, U.
M. N. Bobrow, T. D. Harris, K. J. Shaughnessy, G. J. Litt, J.
Immunol. Methods, 1989, 125, 279; R. P. v. Gijlswijk, H. J.
Zijlmans, J. Wiegant, M. N. Bobrow, T. J. Erickson, K. E. Adler,
Jermilova, S. N. MacMillan, A. Nikolopoulou, S. Ponnala, C. F.
Ramogida, A. K. Robertson, C. Rodríguez-Rodríguez, P.
Schaffer, C. Williams, J. W. Babich, V. Radchenko, J. J. Wilson,
Angew. Chem. Int. Ed., 2017, 56, 14712; B. Yu, H. Wei, Q. He,
C. A. Ferreira, C. J. Kutyreff, D. Ni, Z. T. Rosenkrans, L. Cheng,
F. Yu, J. W. Engle, X. Lan, W. Cai, Angew. Chem. Int. Ed.,
2018, 57, 218.
H. J. Tanke, A. K. Raap, J. Histochem. Cytochem., 1997, 45
,
375; K. Akama, K. Shirai, S. Suzuki, Anal. Chem., 2016, 88
7123.
,
3
4
D. Li, B. Shlyahovsky, J. Elbaz, I. Willner, J. Am. Chem. Soc.,
2007, 129, 5804; Y. He, J. Sun, X. Wang, L. Wang, Sensors
Actuators B: Chem., 2015, 221, 792.
T. Nobori, K. Tosaka, A. Kawamura, T. Joichi, K. Kamino, A.
Kishimura, E. Baba, T. Mori, Y. Katayama, Anal. Chem., 2017,
23 A. Boschi, P. Martini, E. Janevik-Ivanovska, A. Duatti, Drug
Discov. Today, 2018, 23, 1489.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins