ACS Chemical Biology
Articles
(14) Hawser, S. P., and Douglas, L. J. (1995) Resistance of Candida-
albicans biofilms to antifungal agents in-vitro. Antimicrob. Agents
Chemother. 39, 2128−2131.
(37) Chongsiriwatana, N. P., Patch, J. A., Czyzewski, A. M., Dohm,
M. T., Ivankin, A., Gidalevitz, D., Zuckermann, R. N., and Barron, A. E.
(2008) Peptoids that mimic the structure, function, and mechanism of
helical antimicrobial peptides. Proc. Natl. Acad. Sci. U.S.A. 105, 2794−
2799.
(38) Ryge, T. S., and Hansen, P. R. (2005) Novel lysine-peptoid
hybrids with antibacterial properties. J. Pept. Sci. 11, 727−734.
(39) Ivankin, A., Livne, L., Mor, A., Caputo, G. A., DeGrado, W. F.,
Meron, M., Lin, B., and Gidalevitz, D. (2010) Role of the
conformational rigidity in the design of biomimetic antimicrobial
compounds. Angew. Chem., Int. Ed. 49, 8462−8465.
(40) Scott, R. W., DeGrado, W. F., and Tew, G. N. (2008) De novo
designed synthetic mimics of antimicrobial peptides. Curr. Opin.
Biotechnol. 19, 620−627.
(41) Claudon, P., Violette, A., Lamour, K., Decossas, M., Fournel, S.,
Heurtault, B., Godet, J., Mely, Y., Jamart-Gregoire, B., Averlant-Petit,
M. C., Briand, J. P., Duportail, G., Monteil, H., and Guichard, G.
(2010) Consequences of isostructural main-chain modifications for the
design of antimicrobial foldamers: Helical mimics of host-defense
peptides based on a heterogeneous amide/urea backbone. Angew.
Chem., Int. Ed. 49, 333−336.
(42) Liu, R. H., Chen, X. Y., Falk, S. P., Mowery, B. P., Karlsson, A. J.,
Weisblum, B., Palecek, S. P., Masters, K. S., and Gellman, S. H. (2014)
Structure-activity relationships among antifungal nylon-3 polymers:
Identification of materials active against drug-resistant strains of
Candida albicans. J. Am. Chem. Soc. 136, 4333−4342.
(43) Takahashi, H., Palermo, E. F., Yasuhara, K., Caputo, G. A., and
Kuroda, K. (2013) Molecular design, structures, and activity of
antimicrobial peptide-mimetic polymers. Macromol. Biosci. 13, 1285−
1299.
(44) Uppu, D., Akkapeddi, P., Manjunath, G. B., Yarlagadda, V.,
Hoque, J., and Haldar, J. (2013) Polymers with tunable side-chain
amphiphilicity as non-hemolytic antibacterial agents. Chem. Commun.
49, 9389−9391.
(45) Oda, Y., Kanaoka, S., Sato, T., Aoshima, S., and Kuroda, K.
(2011) Block versus random amphiphilic copolymers as antibacterial
agents. Biomacromolecules 12, 3581−3591.
(46) Kuroda, K., and DeGrado, W. F. (2005) Amphiphilic
polymethacrylate derivatives as antimicrobial agents. J. Am. Chem.
Soc. 127, 4128−4129.
(47) Tew, G. N., Liu, D. H., Chen, B., Doerksen, R. J., Kaplan, J.,
Carroll, P. J., Klein, M. L., and DeGrado, W. F. (2002) De novo design
of biomimetic antimicrobial polymers. Proc. Natl. Acad. Sci. U.S.A. 99,
5110−5114.
(48) Epand, R. F., Schmitt, M. A., Gellman, S. H., and Epand, R. M.
(2006) Role. of membrane lipids in the mechanism of bacterial species
selective toxicity by two alpha/beta-antimicrobial peptides. Biochim.
Biophys. Acta, Biomembr. 1758, 1343−1350.
(49) Epand, R. F., Schmitt, M. A., Gellman, S. H., Sen, A., Auger, M.,
Hughes, D. W., and Epand, R. M. (2005) Bacterial species selective
toxicity of two isomeric alpha/beta-peptides: Role of membrane lipids.
Mol. Membr. Biol. 22, 457−469.
(50) Seebach, D., and Matthews, J. L. (1997) Beta-peptides: a
surprise at every turn. Chem. Commun., 2015−2022.
(51) Cheng, R. P., Gellman, S. H., and DeGrado, W. F. (2001) Beta-
peptides: From structure to function. Chem. Rev. 101, 3219−3232.
(52) Hintermann, T., and Seebach, D. (1997) The biological stability
of beta-peptides: No interactions between alpha- and beta-peptidic
structures. Chimia 51, 244−247.
(53) Raguse, T. L., Porter, E. A., Weisblum, B., and Gellman, S. H.
(2002) Structure-activity studies of 14-helical antimicrobial beta-
peptides: Probing the relationship between conformational stability
and antimicrobial potency. J. Am. Chem. Soc. 124, 12774−12785.
(54) Liu, D. H., and DeGrado, W. F. (2001) De novo design,
synthesis, and characterization of antimicrobial beta-peptides. J. Am.
Chem. Soc. 123, 7553−7559.
(15) Ganz, T. (2003) Defensins: Antimicrobial peptides of innate
immunity. Nat. Rev. Immunol. 3, 710−720.
(16) Gallo, R. L., and Nizet, V. (2003) Endogenous production of
antimicrobial peptides in innate immunity and human disease. Curr.
Allergy Asthma Rep. 3, 402−409.
(17) Beutler, B. (2004) Innate immunity: an overview. Mol. Immunol.
40, 845−859.
(18) Hancock, R. E. W., and Lehrer, R. (1998) Cationic peptides: a
new source of antibiotics. Trends Biotechnol. 16, 82−88.
(19) Zasloff, M. (2002) Antimicrobial peptides of multicellular
organisms. Nature 415, 389−395.
(20) Brogden, K. A., Ackermann, M., McCray, P. B., and Tack, B. F.
(2003) Antimicrobial peptides in animals and their role in host
defences. Int. J. Antimicrob. Agents 22, 465−478.
(22) Chu, H. L., Yu, H. Y., Yip, B. S., Chih, Y. H., Liang, C. W.,
Cheng, H. T., and Cheng, J. W. (2013) Boosting salt resistance of
short antimicrobial peptides. Antimicrob. Agents Chemother. 57, 4050−
4052.
(23) Smith, J. J., Travis, S. M., Greenberg, E. P., and Welsh, M. J.
(1996) Cystic fibrosis airway epithelia fail to kill bacteria because of
abnormal airway surface fluid. Cell 85, 229−236.
(24) Bowdish, D. M. E., Davidson, D. J., Lau, Y. E., Lee, K., Scott, M.
G., and Hancock, R. E. W. (2005) Impact of LL-37 on anti-infective
immunity. J. Leukocyte Biol. 77, 451−459.
(25) Goldman, M. J., Anderson, G. M., Stolzenberg, E. D., Kari, U. P.,
Zasloff, M., and Wilson, J. M. (1997) Human beta-defensin-1 is a salt-
sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88,
553−560.
(26) Huang, J. F., Hao, D. M., Chen, Y., Xu, Y. M., Tan, J. J., Huang,
Y. B., Li, F., and Chen, Y. X. (2011) Inhibitory effects and mechanisms
of physiological conditions on the activity of enantiomeric forms of an
alpha-helical antibacterial peptide against bacteria. Peptides 32, 1488−
1495.
(27) Yeaman, M. R., and Yount, N. Y. (2003) Mechanisms of
antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27−55.
(28) Shai, Y. (1999) Mechanism of the binding, insertion and
destabilization of phospholipid bilayer membranes by alpha-helical
antimicrobial and cell non-selective membrane-lytic peptides. Biochim.
Biophys. Acta, Biomembr. 1462, 55−70.
(29) Huang, H. W. (2000) Action of antimicrobial peptides: Two-
state model. Biochemistry 39, 8347−8352.
(30) Nizet, V. (2006) Antimicrobial peptide resistance mechanisms
of human bacterial pathogens. Curr. Issues Mol. Biol. 8, 11−26.
(31) Schmidtchen, A., Frick, I. M., Andersson, E., Tapper, H., and
Bjorck, L. (2002) Proteinases of common pathogenic bacteria degrade
and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46, 157−
168.
(32) Andersson, D. I., and Hughes, D. (2010) Antibiotic resistance
and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8,
260−271.
(33) Brogden, K. A. (2005) Antimicrobial peptides: Pore formers or
metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238−250.
(34) Hilchie, A. L., Wuerth, K., and Hancock, R. E. W. (2013)
Immune modulation by multifaceted cationic host defense (anti-
microbial) peptides. Nat. Chem. Biol. 9, 761−768.
(35) Padhee, S., Hu, Y. G., Niu, Y. H., Bai, G., Wu, H. F., Costanza,
F., West, L., Harrington, L., Shaw, L. N., Cao, C. H., and Cai, J. F.
(2011) Non-hemolytic alpha-AApeptides as antimicrobial peptidomi-
metics. Chem. Commun. 47, 9729−9731.
(36) Chongsiriwatana, N. P., Miller, T. M., Wetzler, M., Vakulenko,
S., Karlsson, A. J., Palecek, S. P., Mobashery, S., and Barron, A. E.
(2011) Short alkylated peptoid mimics of antimicrobial lipopeptides.
Antimicrob. Agents Chemother. 55, 417−420.
(55) Hamuro, Y., Schneider, J. P., and DeGrado, W. F. (1999) De
novo design of antibacterial beta-peptides. J. Am. Chem. Soc. 121,
12200−12201.
1620
dx.doi.org/10.1021/cb500203e | ACS Chem. Biol. 2014, 9, 1613−1621