158/[348]
B. K. PARK
Table . Half-Wave Potentials (E/ vs E°Fc/Fc+) of Free C, 3, 4, and 1.
/−
−/−
−/−
−/−
−/−
−/−
−/−
E/
E/
E/
E/
E/
E/
E/
solvent
C
1
− .
− .
− .
− .
− .
− .
− .
− .
− .
− .
− .
− .
− .
CB
CB
CB
CB
− .
− .
− .
− .
− .
− .
3
− .
− .
4
aTwo-electron process and peak potential of irreversible process.
CV of 1 exhibits five-well separated, reversible, one-electronic redox couples at −1.14,
−1.35, −1.49, −1.83, and −2.03 V and one irreversible two-electron redox wave at −2.56 V.
The five electron redox waves are sequentially added into the two C60 moieties such as C60-
Os3-C60−, C60−-Os3-C60−, C60−-Os3-C602−, C602−-Os3-C602−, and C602−-Os3-C603−. Similar
behaviors were reported bis[60]fullerene compounds, 3 and 4, and the reversible reduction
potentials of 1 show anodic shifts compared to those of 3 and 4. The irreversible two-electron
reduction (−2.56 V) is considered to show due to instability of the compound with high neg-
ative charge.
Conclusion
Triosmium-bis[60]fullerene (Os3(CO)7(dppm)(C60)2, 1) and bis(metal cluster)[60]fullerene
([Os3(CO)7(1,2-dppm)](μ3-η2:η2:η2-C60)[Re3(μ-H)3(CO)9], 2) was synthesized and charac-
terized. Electrochemical property of 1 are anodic shift and less stability than those of reported
bis[60]fullerenes (Rh6(CO)5(dppm)2(CNCH2Ph)(μ3-η2:η2:η2-C60)2 (3) and Ir4(CO)3(μ4-
CH)(PMe3)2(μ-PMe2)(CNCH2Ph)(μ-η2:η2-C60)(μ4-η1:η1:η2:η2-C60) (4)).
Acknowledgments
This research was supported by a grant from Development of Metal-Chalcogen Fullerene Hybrid Mate-
rials (KK-1407-B7) and the Development of Organometallics and Device Fabrication for IT·ET Con-
vergence (KK-1502-H00) through the Korea Research Institute of Chemical Technology (KRICT).
References
[1] Bendikov, M., Wudl, F. & Perepichka, D. F. (2004). Chem. Rev., 104, 4891–4945.
[2] Nakamura, E., & Isobe, H. (2004). Acc. Chem. Res., 36, 807–815.
[3] Balch, A. L., & Olmstead, M. M. (1998). Chem. Rev., 98, 2123–2165.
[4] Lee, K., Song, H., & Park, J. T. (2003). Acc. Chem. Res., 36, 78–86 and references therein.
[5] Park, B. K., Lee, G., Kim, K. H., Kang, H., Lee, C. Y., Miah, M. A., Jung, J., Han, Y.-K., & Park, J. T.
(2006). J. Am. Chem. Soc., 128, 11160–11172 and references therein.
[6] Lin, Y.-S., & Yeh, W.-Y. (2014). Organometallics, 33, 731–735.
[7] Park, B. K., Lee, C. Y., Jung, J., Lim, J. H., Han, Y.-K., Hong, C. S., & Park, J. T. (2007). Angew.
Chem., Int. Ed., 46, 1436–1439.
[8] Jun, T., Park, B. K., & Lee, C. Y. (2014). J. Organomet. Chem., 763–764, 20–25.
[9] Park, J. T., Song, H., Cho, J.-J., Chung, M.-K., Lee, J.-H., & Suh, I.-H. (1998). Organometallics, 17,
227–236.
[10] Lee, K., Choi, Y. J., Cho, Y.-J., Lee, C. Y., Song, H., Lee, C. H., Lee, Y. S., & Park, J. T. (2004). J. Am.
Chem. Soc., 126, 9837–9844 and references therein.