Organic Letters
Letter
Notes
Scheme 4. Sequential One-Pot Synthesis of 1,2-Trans
Oligosaccharides Using the Double-Glycosylation Strategy
The authors declare the following competing financial
interest(s): A patent regarding this work is pending (Kyushu
University, PCT Application No. PCT/JP2017/46800).
ACKNOWLEDGMENTS
■
This work was supported by JSPS KAKENHI (Grant Nos.
JP15K21210, JP18K05462) and grants from the Heiwa
Nakajima Foundation (Japan) and the Nakamura Jishiro
Ikueikai Foundation (Japan) to K.T. M.K. thanks Heiwa
Nakajima Foundation (Japan) and Takeda Science Foundation
(Japan) for research fellowships. We are grateful to Mr.
Takaaki Torikai, Ms. Rumiko Torikai, Mr. Motoaki Yamaoka,
Ms. Michie Yamaoka, Ms. Kimiko Komiya, and Dr. Kazuhiro
Matsunaga for their generous personal financial donations.
REFERENCES
12. As a result, target compounds 39−41 were readily obtained
in 64−54% yield as single isolable isomers. Despite the use of
only a single combination of the activation method (NIS/
In(OTf)3) and a leaving group (−SPh), this novel strategy
perfectly controls both the stereoselectivity of the glycosidic
linkages and the sequence of saccharides via the temperature.
Although further investigation is needed for the full ration-
alization, the extremely higher reactivity of our 2-O-
alkoxymethylated donors may relate to the direct (from the
C7H2 to O1 to C1 atom of Scheme 3) and/or indirect
(through the C8H2 to O2 to C2 to C1 atom) electron-
donating character of the alkyl groups in the alkoxymethyl
groups.
In summary, we have developed a practical and general
method for the formation of 1,2-trans-glycosidic linkages using
the neighboring group participation of 2-O-alkoxymethyl
protecting groups. Easy removal of the 2-O-alkoxymethyl
groups in the presence of an intact ester moiety further
demonstrated the utility of these orthogonal protecting groups,
evident from the syntheses of two natural β-D-glucopyrano-
sides. Finally, the extremely high reactivity of 2-O-alkoxyme-
thylated donors enabled us to develop a novel one-pot 1,2-
trans-selective glycosylation method using building blocks
equipped with a single leaving group. Further studies on the
properties of alkoxymethylated saccharides and their applica-
tion scope are currently in progress in our laboratory.
■
(1) For the biological relevance of glycosylations, see: (a) Krasnova,
L.; Wong, C.-H. Annu. Rev. Biochem. 2016, 85, 599−630. (b) Ouerfelli,
O.; Warren, J. D.; Wilson, R. M.; Danishefsky, S. J. Expert Rev.
́
Vaccines 2005, 4, 677−685. (c) Galonic, D. P.; Gin, D. Y. Nature
2007, 446, 1000−1007.
(2) For recent reviews on O-glycosylations, see: (a) Williams, R.;
Galan, M. C. Eur. J. Org. Chem. 2017, 2017, 6247−6264. (b) Sangwan,
R.; Mandal, P. K. RSC Adv. 2017, 7, 26256−26321. (c) van der Vorm,
́
S.; Hansen, T.; Overkleeft, H. S.; van der Marel, G. A.; Codee, J. D. C.
Chem. Sci. 2017, 8, 1867−1875. (d) Das, R.; Mukhopadhyay, B.
ChemistryOpen 2016, 5, 401−433. (e) Yang, Y.; Zhang, X.; Yu, B. Nat.
Prod. Rep. 2015, 32, 1331−1355. (f) Seeberger, P. H. Acc. Chem. Res.
2015, 48, 1450−1463. (g) Mydock, L. K.; Demchenko, A. V. Org.
Biomol. Chem. 2010, 8, 497−510. (h) Crich, D. Acc. Chem. Res. 2010,
43, 1144−1153. (i) Zhu, X.; Schmidt, R. R. Angew. Chem., Int. Ed.
2009, 48, 1900−1934.
(3) For selected examples on the stereoselective glycosylation via
neighboring group participation, see: (a) Speciale, G.; Farren-Dai, M.;
Shidmoossavee, F. S.; Williams, S. J.; Bennet, A. J. J. Am. Chem. Soc.
2016, 138, 14012−14019. (b) Elferink, H.; Mensink, R. A.; White, P.
B.; Boltje, T. J. Angew. Chem., Int. Ed. 2016, 55, 11217−11220.
́
(c) Buda, S.; Nawoj, M.; Gołębiowska, P.; Dyduch, K.; Michalak, A.;
Mlynarski, J. J. Org. Chem. 2015, 80, 770−780. (d) Singh, G. P.;
Watson, A. J. A.; Fairbanks, A. J. Org. Lett. 2015, 17, 4376−4379.
(e) Cox, D. J.; Singh, G. P.; Watson, A. J. A.; Fairbanks, A. J. Eur. J.
Org. Chem. 2014, 2014, 4624−4642. (f) Buda, S.; Gołębiowska, P.;
Mlynarski, J. Eur. J. Org. Chem. 2013, 2013, 3988−3991. (g) Fascione,
M. A.; Kilner, C. A.; Leach, A. G.; Turnbull, W. B. Chem. - Eur. J.
2012, 18, 321−333. (h) Chao, C.-S.; Lin, C.-Y.; Mulani, S.; Hung, W.-
C.; Mong, K.-k. T. Chem. - Eur. J. 2011, 17, 12193−12202. (i) Crich,
D.; Cai, F. Org. Lett. 2007, 9, 1613−1615. (j) Smoot, J. T.;
Pornsuriyasak, P.; Demchenko, A. V. Angew. Chem., Int. Ed. 2005, 44,
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
́
7123−7126. (k) Berces, A.; Enright, G.; Nukada, T.; Whitfield, D. M.
J. Am. Chem. Soc. 2001, 123, 5460−5464. (l) Jiao, H.; Hindsgaul, O.
Angew. Chem., Int. Ed. 1999, 38, 346−348. (m) Nukada, T.; Berces,
A.; Zgierski, M. Z.; Whitfield, D. M. J. Am. Chem. Soc. 1998, 120,
13291−13295.
Experimental procedures, spectral data, as well as 1H and
13C NMR spectra of all new compounds (PDF)
(4) Jensen, K. J. J. Chem. Soc., Perkin Trans. 2002, 1, 2219−2233.
(5) (a) Sato, T.; Joh, Y.; Oishi, T.; Torikai, K. Tetrahedron Lett.
2017, 58, 2178−2181. (b) Sato, T.; Oishi, T.; Torikai, K. Org. Lett.
2015, 17, 3110−3113.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(6) Salmasan, R. M.; Manabe, Y.; Kitawaki, Y.; Chang, T.-C.; Fukase,
K. Chem. Lett. 2014, 43, 956−958.
(7) For selected examples of the armed/disarmed concepts, see:
(a) Bandara, M. D.; Yasomanee, J. P.; Rath, N. P.; Pedersen, C. M.;
Bols, M.; Demchenko, A. V. Org. Biomol. Chem. 2017, 15, 559−563.
(b) Mydock, L. K.; Demchenko, A. V. Org. Lett. 2008, 10, 2107−
2110. (c) Crich, D.; Li, M. Org. Lett. 2007, 9, 4115−4118.
(d) Pedersen, C. M.; Nordstrøm, L. U.; Bols, M. J. Am. Chem. Soc.
2007, 129, 9222−9235. (e) Mootoo, D. R.; Konradsson, P.;
Author Contributions
‡M.K. and Y.J. contributed equally.
D
Org. Lett. XXXX, XXX, XXX−XXX