Organic Letters
Letter
Scheme 6. Proposed Mechanism
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the DST (SR/S1/OC-26/2011), India for the support
of this research. R.M. thanks the CSIR for a fellowship.
■
REFERENCES
■
(1) (a) Kraus, J. M.; Verlinde, C. L. M. J.; Karimi, M.; Lepesheva, G. I.;
Gelb, M. H.; Buckner, F. S. J. Med. Chem. 2009, 52, 1639. (b) Glasnov, T.
N.; Stadlbauer, W.; Kappe, C. O. J. Org. Chem. 2005, 70, 3864.
(c) Claassen, G.; Brin, E.; Crogan-Grundy, C.; Vaillancourt, M. T.;
Zhang, H. Z.; Cai, S. X.; Drewe, J.; Tseng, B.; Kasibhatla, S. Cancer Lett.
2009, 274, 243. (d) Hassanin, H. M.; El-edfawy, S. M. Heterocycles 2012,
85, 2421.
(2) (a) Michael, J. P. Nat. Prod. Rep. 1995, 12, 465. (b) Hanuman, J. B.;
Katz, A. Nat. Prod. Lett. 1993, 3, 227.
(3) (a) Badgujar, N. S.; Pazicky, M.; Traar, P.; Terec, A.; Uray, G.;
Stadlbauer, W. Eur. J. Org. Chem. 2006, 2715. (b) Micotto, T. L.; Brown,
A. S.; Wilson, J. N. Chem. Commun. 2009, 7548. (c) Fabian, W. M. F.;
Niederreiter, K. S.; Uray, G.; Stadlbauer, W. J. Mol. Struct. 1999, 477,
209.
(4) (a) Anzini, M.; Cappelli, A.; Vomero, S. J. Heterocycl. Chem. 1991,
28, 1809. (b) Godard, A.; Fourquez, J. M.; Tamion, R.; Marsais, F.;
Queguine, G. Synlett 1994, 235.
(5) (a) Domınguez-Fernandez, F.; Lopez-Sanz, J.; Perez-Mayoral, E.;
Bek, D.; Martın-Aranda, R. M.; Lopez-Peinado, A. J.; Cejka, J.
ChemCatChem. 2009, 1, 241. (b) Marull, M.; Lefebvre, O.; Schlosser,
M. Eur. J. Org. Chem. 2004, 54.
(6) (a) Kadnikov, D. V.; Larock, R. C. J. Org. Chem. 2004, 69, 6772.
(b) Manley, P. J.; Bilodeau, M. T. Org. Lett. 2004, 6, 2433. (c) Jia, C.;
Piao, D.; Kitamura, T.; Fujiwara, Y. J. Org. Chem. 2000, 65, 7516.
(d) Inamoto, K.; Saito, T.; Hiroya, K.; Doi, T. J. Org. Chem. 2010, 75,
3900. (e) Ferguson, J.; Zeng, F.; Alwis, N.; Alper, H. Org. Lett. 2013, 15,
1998.
(7) (a) Reddy, M. S.; Thirupathi, N.; Babu, M. H. Eur. J. Org. Chem.
2012, 5803. (b) Huang, C.-C.; Chang, N.-C. Org. Lett. 2008, 10, 673.
(c) Angibaud, P. R.; Venet, M. G.; Filliers, W.; Broeckx, R.; Ligny, Y. A.;
Muller, P.; Poncelet, V. S.; End, D. W. Eur. J. Org. Chem. 2004, 479.
(d) Gao, W.-T.; Hou, W.-D.; Zheng, M.-R.; Tang, L.-J. Synth. Commun.
2010, 40, 732.
(8) Rh reviews: (a) Thansandote, P.; Lautens, M. Chem.Eur. J. 2009,
15, 5874. (b) Satoh, T.; Miura, M. Chem.Eur. J. 2010, 16, 11212.
(c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110,
624. (d) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. Ru
reviews: (e) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev.
2012, 112, 5879. (f) Ackermann, L. Acc. Chem. Res. 2014, 47, 281.
(9) (a) Ackermann, L.; Lygin, A. V. Org. Lett. 2012, 14, 764. (b) Wang,
L.; Ackermann, L. Org. Lett. 2013, 15, 176.
(10) Hydroarylations: (a) Manikandan, R.; Jeganmohan, M. Org. Lett.
2014, 16, 912. (b) Reddy, M. C.; Jeganmohan, M. Chem. Commun.
2013, 49, 481. (c) Hashimoto, Y.; Hirano, K.; Satoh, T.; Kakiuchi, F.;
Miura, M. Org. Lett. 2012, 14, 2058. (d) Itoh, M.; Hashimoto, Y.;
Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2013, 78, 8098.
(11) Baeumle, M. BioFiles 2011, 6.3, 23.
Protonation at the Ru−C bond of intermediate 10 by RCOOH
affords ortho-alkenylated anilide 11 and regenerates the Ru
species 8. Later, it could be possible that the carboxylic acid or
solvent i-PrOH accelerates trans−cis isomerization of the double
bond of 11 via Michael addition followed by intramolecular
nucleophilic addition of NHCOMe to the ester moiety followed
by a loss of the acetyl group, leading to cyclic compound 3.14 In
the reaction, organic acid plays multiple roles such as acting as a
proton source, accelerating cis−trans isomerization and
deacylation of anilide to aniline.
To support the multiple roles of organic acid, the reaction of
1a with 2a was carried out in the presence of CD3COOD instead
of pivalic acid under similar reaction conditions. In the reaction,
product d-3aa was observed in 40% yield, in which 73% of
deuterium incorporation was observed at the C-3 carbon of
quinolinone. In the meantime, 71% deuterium incorporation was
also observed at the C-8 carbon of d-3aa. This result clearly
supports that the ortho C−H bond cleavage of anilide 1 is a
reversible process. Further, to support the conversion of product
11 into 3, product 11a was prepared separately and treated with
pivalic acid (10.0 equiv) in i-PrOH at 130 °C for 12 h without a
catalyst. As expected, product 3aa was observed in 75% yield.
But, the same reaction did not produce product 3aa without an
acid source. This result clearly reveals the multiple role of organic
acid in the cyclization reaction.
In conclusion, we demonstrated a Ru-catalyzed cyclization of
anilides with substituted propiolates or acrylates in the presence
of carboxylic acid, which provides 4-substituted-2-quinolinones
and 2-quinolinones in good to excellent yields. 3-Halo-4-
substituted-2-quinolinones and 2-chloroquinolines were pre-
pared using the obtained 2-quinolinones.
(12) Deng, Y.; Gong, W.; He, J.; Yu, J.-Q. Angew. Chem., Int. Ed. 2014,
DOI: 10.1002/anie.201403878.
(13) (a) Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A. V. Org. Lett.
2012, 14, 728. (b) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A.
H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. M. N. J. Am.
Chem. Soc. 2002, 124, 1586.
(14) (a) Manikandan, R.; Jeganmohan, M. Org. Lett. 2014, 16, 652.
(b) Kuninobu, Y.; Kawata, A.; Nishi, M.; Takata, Z.; Takai, K. Chem.
Commun. 2008, 6360.
ASSOCIATED CONTENT
■
S
* Supporting Information
General experimental procedure, starting materials preparation,
and characterization details. This material is available free of
D
dx.doi.org/10.1021/ol501548e | Org. Lett. XXXX, XXX, XXX−XXX