COMMUNICATIONS
Asymmetric Synthesis of a-Amino Acids
0.007 mmol, 0.1 equiv.) and crushed NaOH (106.7 mg,
2.7 mmol, 40 equiv.) were dissolved in 1,2-dichloroethane
(0.7 mL) under an argon atmosphere. The alkylation reagent
(0.17 mmol, 2.5 equiv.) was added to the reaction mixture
(liquid alkyl halides were dissolved in a small amount of 1,2-
dichloroethane). The reaction was followed by TLC
(DCM:acetone 4:1) until completion (30–60 min). The reac-
tion mixture was washed with AcOH (5% aqueous solution,
5 mL) and the separated aqueous layer was extracted with
CH2Cl2 (3ꢄ5 mL each). The combined organic phases were
dried over Na2SO4, filtered, and concentrated under
vacuum. The product was purified by column chromatogra-
phy (DCM:acetone 4:1 or 7:1).
[5] Asymmetric Synthesis and Application of a-Amino
Acids, (Eds.: V. A. Soloshonok, K. Izawa), ACS Sym-
posium Series 1009, ACS, Washington, DC, 2009.
[6] For selected recent publications on syntheses of a-AA
by asymmetric hydrogenation, see: a) H. Shimizu, I.
Nagasaki, N. Sayo, T. Saito, in: Asymmetric Synthesis
and Application of a-Amino Acids, (Eds.: V. A. Solo-
shonok, K. Izawa), ACS Symposium Series 1009, ACS,
Washington, DC, 2009, pp 203–226; b) Y. Hamada,
Chem. Rec. 2014, 14, 235–250; c) Z. Kokan, S. I. Kirin,
Eur. J. Org. Chem. 2013, 8154–8161; d) M. Jouffroy, D.
Sꢀmeril, D. Armspach, D. Matt, Eur. J. Org. Chem.
2013, 6069–6077; e) V. D. Mçschwitzer, B. M. Kariuki,
J. E. Redman, Tetrahedron Lett. 2013, 54, 4526–4528;
f) I. Arribas, E. ꢆlvarez, A. Pizzano, Organometallics
2013, 32, 2497–2500; g) M. J. Bravo, R. M. Ceder, G.
Muller, M. Rocamora, Organometallics 2013, 32, 2632–
2642; h) B. Seashore-Ludlow, F. Saint-Dizier, P. Somfai,
Org. Lett. 2012, 14, 6334–6337.
[7] For scaled-up reactions, see: a) Asymmetric Catalysis
on Industrial Scale: Challenges, Approaches and Solu-
tions, (Eds.: H.-U. Blaser, E. Schmidt), Wiley-VCH,
Weinheim, 2004; b) R. B. Appell, L. T. Boulton, E. D.
Daugs, M. Hansen, C. H. Hanson, J. Heinrich, C.
Kronig, R. C. Lloyd, D. Louks, M. Nitz, C. Praquin,
J. A. Ramsden, H. Samuel, M. Smit, M. Willets, Org.
Process Res. Dev. 2013, 17, 69–76; c) M. E. Fox, M.
Jackson, G. Meek, M. Willets, Org. Process Res. Dev.
2011, 15, 1163–1171; d) J. C. Lorenz, C. A. Busacca,
X. W. Feng, N. Grinberg, N. Haddad, J. Johnson, S. Ka-
padia, H. Lee, A. Saha, M. Sarvestani, E. M. Spinelli,
R. Varsolona, X. Wei, X. Zeng, C. H. Senanayake, J.
Org. Chem. 2010, 75, 1155–1161; e) N. W. Boaz, S. E.
Large, J. A. Ponasik, Jr., M. K. Moore, T. Barnette,
W. D. Nottingham, Org. Process Res. Dev. 2005, 9, 472–
478.
Acknowledgements
We thank IKERBASQUE, Basque Foundation for Science,
the Basque Government (SAIOTEK S-PE13UN098), and
Hamari Chemicals (Osaka, Japan) for financial support. We
are also grateful to SGIker (UPV/EHU) for HR-MS analy-
ses. M. J. acknowledges DAAD (German Academic Ex-
change Service) and the Forschungscluster SusChemSys,
which is co-financed by the Regional Development Fund –
investing in your future – of the European Union and the
State of North Rhine Westphalia, for stipends. H.L. and X.C.
are grateful for financial support from the National Natural
Science Foundation of China (Grant 81025017).
References
[1] a) Chemistry and Biochemistry of the Amino Acids,
(Ed.: G. C. Barrett), Chapman and Hall, London, 1985;
b) Amino Acids, Peptides and Proteins in Organic
Chemistry, Vol. 1, (Ed.: A. B. Hughes), Wiley-VCH,
Weinheim, 2009; c) Amino Acids, Peptides And Pro-
teins, Vol. 37, (Eds.: E. Farkas, M. Ryadnov), RSC,
Cambridge, 2012.
[8] a) M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M.
Kesseler, R. Stꢇrmer, T. Zelinski, Angew. Chem. 2004,
116, 806–843; Angew. Chem. Int. Ed. 2004, 43, 788–824;
b) E. Fogassy, M. Nꢈgrꢂdi, E. Pꢂlovics, J. Schindler,
Synthesis 2005, 1555–1568; c) W. Leuchtenberger, K.
Huthmacher, K. Drauz, Appl. Microbiol. Biotechnol.
2005, 69, 1–8.
[9] a) V. J. Hruby, G. Li, C. Haskell-Luevano, M. Shender-
ovich, Biopolymers 1997, 43, 219–266; b) V. J. Hruby,
P. M. Balse, Curr. Med. Chem. 2000, 7, 945–970; c) J.
Vagner, H. Qu, V. J. Hruby, Curr. Opin. Chem. Biol.
2008, 12, 292–296.
[2] V. A. Soloshonok, C. Cai, V. J. Hruby, L. Van Meervelt,
Tetrahedron 1999, 55, 12045–12058.
[3] For reviews, see: a) R. O. Duthaler, Tetrahedron 1994,
50, 1539–1650; b) K. Maruoka, T. Ooi, Chem. Rev.
2003, 103, 3013–3028; c) J.-A. Ma, Angew. Chem. 2003,
115, 4426–4435; Angew. Chem. Int. Ed. 2003, 42, 4290–
4299; d) C. Nꢂjera, J. M. Sansano, Chem. Rev. 2007,
107, 4584–4671.
[10] a) N. H. Park, G. Teverovskiy, S. L. Buchwald, Org.
Lett. 2014, 16, 220–223; b) D. Boyall, D. E. Frantz,
E. M. Carreira, Org. Lett. 2002, 4, 2605–2606; c) V. A.
Soloshonok, H. Ohkura, M. Yasumoto, J. Fluorine
Chem. 2006, 127, 930–935; d) T. K. Ellis, C. H. Martin,
G. M. Tsai, H. Ueki, V. A. Soloshonok, J. Org. Chem.
2003, 68, 6208–6214.
[11] a) T. Ooi, K. Maruoka, Acc. Chem. Res. 2004, 37, 526–
533; b) T. Hashimoto, K. Maruoka, Chem. Rev. 2007,
107, 5656–5682; c) T. Ooi, K. Maruoka, Angew. Chem.
2007, 119, 4300–4345; Angew. Chem. Int. Ed. 2007, 46,
4222–4266; d) S. Shirakawa, K. Maruoka, Angew.
Chem. 2013, 125, 4408–4445; Angew. Chem. Int. Ed.
2013, 52, 4312–4348.
[4] For recent publications on the synthesis of a-AAs, see:
a) H. Wang, T. Jiang, M.-H. Xu, J. Am. Chem. Soc.
2013, 135, 971–974; b) ꢅ. Pericas, A. Shafir, A. Vallri-
bera, Org. Lett. 2013, 15, 1448–1451; c) S. Yadav, C. M.
Taylor, J. Org. Chem. 2013, 78, 5401–5409; d) C. L. Hu-
gelshofer, K. T. Mellem, A. G. Myers, Org. Lett. 2013,
15, 3134–3137; e) A. A. Sathe, D. R. Hartline, A. T. Ra-
dosevich, Chem. Commun. 2013, 49, 5040–5042; f) A.
Nash, A. Soheili, U. K. Tambar, Org. Lett. 2013, 15,
4770–4773; g) K. Chen, F. Hu, S.-Q. Zhang, B.-F. Shi,
Chem. Sci. 2013, 4, 3906–3911; h) A. F. M. Noisier, C. S.
Harris, M. A. Brimble, Chem. Commun. 2013, 49,
7744–7746; i) J. E. Taylor, D. S. B. Daniels, A. D. Smith,
Org. Lett. 2013, 15, 6058–6061.
Adv. Synth. Catal. 0000, 000, 0 – 0
ꢃ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5
ÞÞ
These are not the final page numbers!