Journal of the American Chemical Society
Article
are detailed in the Supporting Information. We thus identified
27 putative sialic acid-modified glycoproteins as listed in Table
S2 of the Supporting Information. ERLIN1 is one of the
putative sialic acid-modified glycoproteins, which was pre-
viously identified as an N-linked glycoprotein.24 To validate
whether ERLIN1 can be recognized by sialic acid-specific
lectins (Sambucus nigra (SNA) recognizes α2,6-linked sialic
acids, while Maackia amurensis lectin II (MALII) binds α2,3-
linked sialic acid), the cell lysates were incubated with
biotinylated lectins (SNA and MALII). Associated proteins
were precipitated with NeutrAvidin agarose beads. As shown in
Figure S8 in the Supporting Information, ERLIN1 was detected
in SNA and MALII affinity precipitates by immunoblot analysis
using anti-ERLIN1. It could be confirmed that ERLIN1 is a
sialic acid-modified glycoprotein by our methodology. Our
study demonstrated the feasibility of fluorescence labeling using
AzBOCEt to identify glycoproteins.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Academia Sinica and the National Science Council
for financial support.
REFERENCES
■
(1) Dube, D. H.; Bertozzi, C. R. Nat. Rev. Drug Discovery 2005, 4,
477−488.
(2) Ohtsubo, K.; Marth, J. D. Cell 2006, 126, 855−867.
(3) Fuster, M. M.; Esko, J. D. Nat. Rev. Cancer 2005, 5, 526−542.
(4) (a) Prescher, J. A.; Bertozzi, C. R. Cell 2006, 126, 851−854.
(b) Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R.
Science 2008, 320, 664−667. (c) Sletten, E. M.; Bertozzi, C. R. Angew.
Chem., Int. Ed. 2009, 48, 6974−6998. (d) Friscourt, F.; Ledin, P. A.;
Mbua, N. E.; Flanagan-Steet, H. R.; Wolfert, M. A.; Steet, R.; Boons,
G.-J. J. Am. Chem. Soc. 2012, 134, 5381−5389. (e) Niederwieser, A.;
CONCLUSIONS
■
We have designed a new CuAAC-activatable probe AzBOCEt
(Az10), which showed little fluorescence (Φfl = 0.011).
However, upon triazole formation with 4-pentyn-1-ol, a strong
fluorescence is induced with excellent enhancement of
fluorescence quantum yield (52-fold increase) at a long
excitation wavelength above 500 nm. Quantum mechanical
calculations indicate that conversion of 4-azidoanisole to the
corresponding triazoles results in a significant decrease of the
HOMO energy level of the triazole-substituted aryl moiety,
supporting that the fluorescence enhancement upon CuAAC
reaction is due to inhibition of an a-PeT process. As compared
to previously reported fluorogenic azidofluoresceins, AzBOCEt
appears to have a lower fluorescence intensity of unreacted
reagent and a higher signal-to-noise ratio upon triazole
formation, indicating that use of AzBOCEt can more efficiently
inhibit the background noise for labeling of biomolecules and
materials. AzBOCEt probe is utilized in selective labeling of
alkyne-tagged proteins in vitro, and incorporation of alkyne-
tagged glycosyl conjugates in cultured cells can also be
visualized with an extremely low concentration (0.1 μM) of
AzBOCEt. Furthermore, we have shown the use of AzBOCEt
for direct in-gel detection of the alkyne-tagged glycoproteins
from cell lysates after SDS-PAGE. We believe that AzBOCEt is
useful for imaging alkynyl-modified biomolecules for better
understanding of biological processes. In addition, AzBOCEt is
a methoxy- and ester-functionalized azido-BODIPY, which can
be easily converted by hydrolysis to the corresponding
carboxylate probe for improvement of water solubility. On
the other hand, biotin-conjugated azido-BODIPY can be
synthesized by incorporating a biotin derivative in the benzene
moiety. We believe that the biotinylated BODIPY probe should
be a powerful tool for use in profiling and comparing low-
abundant glycoconjugates at different stages for identification of
glycan-related biomarkers.
Spate, A.-K.; Nguyen, L. D.; Jungst, C.; Reutter, W.; Wittmann, V.
̈
̈
Angew. Chem., Int. Ed. 2013, 52, 4265−4268.
(5) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596−2599. (b) Tornøe, C. W.;
Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057−3064.
(6) (a) Sawa, M.; Hsu, T.-L.; Itoh, T.; Sugiyama, M.; Hanson, S. R.;
Vogt, P. K.; Wong, C.-H. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
12371−12376. (b) Hsu, T.-L.; Hanson, S. R.; Kishikawa, K.; Wang, S.-
K.; Sawa, M.; Wong, C.-H. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,
2614−2619. (c) Hanson, S. R.; Hsu, T.-L.; Weerapans, E.; Kishikawa,
K.; Simon, G. M.; Cravatt, B. F.; Wong, C.-H. J. Am. Chem. Soc. 2007,
129, 7266−7267. (d) Tsai, C.-S.; Liu, P.-Y.; Yen, H.-Y.; Hsu, T.-L.;
Wong, C.-H. Chem. Commun. 2010, 46, 5575−5577. (e) Tsai, C.-S.;
Yen, H.-Y.; Lin, M.-I.; Tsai, T.-I.; Wang, S.-Y.; Huang, W.-I.; Hsu, T.-
L.; Cheng, Y.-S. E.; Fang, J.-M.; Wong, C.-H. Proc. Natl. Acad. Sci.
U.S.A. 2013, 110, 2466−2471.
(7) (a) Le Droumaguet, C.; Wang, C.; Wang, Q. Chem. Soc. Rev.
2010, 39, 1233−1239. (b) Sivakumar, K.; Xie, F.; Cash, B. M.; Long,
S.; Barnhill, H. N.; Wang, Q. Org. Lett. 2004, 6, 4603−4606. (c) Zhou,
Z.; Fahrni, C. J. J. Am. Chem. Soc. 2004, 126, 8862−8863. (d) Xie, F.;
Sivakumar, K.; Zeng, Q. B.; Bruckman, M. A.; Hodges, B.; Wang, Q.
Tetrahedron 2008, 64, 2906−2914. (e) Qi, J.; Han, M.-S.; Chang, Y.-
C.; Tung, C.-H. Bioconjugate Chem. 2011, 22, 1758−1762. (f) Herner,
́ ́
A.; Nikic, I.; Kallay, M.; Lemke, E. A.; Kele, P. Org. Biomol. Chem.
2013, 11, 3297−3306.
(8) Shieh, P.; Hangauer, M. J.; Bertozzi, C. R. J. Am. Chem. Soc. 2012,
134, 17428−17431.
(9) Wang, C.; Xie, F.; Suthiwangcharoen, N.; Sun, J.; Wang, Q. Sci.
China: Chem. 2012, 55, 125−130.
(10) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley,
A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997,
97, 1515−1566.
(11) (a) Tanaka, K.; Miura, T.; Umezawa, N.; Urano, Y.; Kikuchi, K.;
Higuchi, T.; Nagano, T. J. Am. Chem. Soc. 2001, 123, 2530−2536.
(b) Miura, T.; Urano, Y.; Tanaka, K.; Nagano, T.; Ohkubo, K.;
Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 8666−8671. (c) Ueno, T.;
Urano, Y.; Setsukinai, K.-i.; Takakusa, H.; Kojima, H.; Kikuchi, K.;
Ohkubo, K.; Fukuzumi, S.; Nagano, T. J. Am. Chem. Soc. 2004, 126,
14079−14085. (d) Urano, Y.; Kamiya, M.; Kanda, K.; Ueno, T.;
Hirose, K.; Nagano, T. J. Am. Chem. Soc. 2005, 127, 4888−4894.
(12) (a) Gabe, Y.; Urano, Y.; Kikuchi, K.; Kojima, H.; Nagano, T. J.
Am. Chem. Soc. 2004, 126, 3357−3367. (b) Ueno, Y.; Urano, Y.;
Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2006, 128, 10640−10641.
(c) Sunahara, H.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc.
2007, 129, 5597−5604. (d) Matsumoto, T.; Urano, Y.; Shoda, T.;
Kojima, H.; Nagano, T. Org. Lett. 2007, 17, 3375−3377.
ASSOCIATED CONTENT
■
S
* Supporting Information
Supplemental figures and tables, synthetic and experimental
procedures, materials, and NMR spectra of synthesized
compounds. This material is available free of charge via the
H
dx.doi.org/10.1021/ja5010174 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX