RSC Advances
Page 4 of 6
ARTICLE
DOI: 10.1039/C6RA06828F
N
2
(a) S. Long, Chem. Soc. Rev., 2013, 42, 4867; (b) G. Qiu, Q. Ding
and J. Wu, Chem. Soc. Rev., 2013, 42, 5257; (c) T. Vlaar, E.
Ruijter, B .U. W. Maes and R. V. A. Orru, Angew. Chem. Int. Ed.,
2013, 52, 7084, (d) Z. Chen, H. Q. Duan, X. Jiang, Y. M. Zhu, S. J.
Ji and S. L. Yang, J. Org. Chem., 2015, 80, 8183.
N
N
N
N
N
N
N
H
NaOAc (2 equiv)
K2S2O8 (1 equiv)
Co(OAc)2.4H2O (10 mol%)
N
N
NH2
H
6, 86%
4
+
t-BuNC
or
or
O
DMF, 80°C, 12 h
O
3
4
M. Tian, Y. He, X. Zhang and X. Fan, J. Org. Chem., 2015, 80,
7447.
R
R
N
N
N
H
(a) Z. Y. Gu, T. H. Zhu, J. J. Cao, X. P. Xu, S. Y. Wang and S. J.
Ji, ACS. Catal., 2014, 4, 49.; (b) T. Tang, X. Jiang, J. M. Wang, Y.
X. Sun and Y. M. Zhu, Tetrahedron, 2014, 70, 2999; (c) D. Wang,
S. Cai, R. Ben, Y. Zhou, X. Li, J. Zhao, W. Wei and Y. Qian,
Synthesis, 2014, 46, 2045; (d) J. M. Wanga, X. Jiang, Y. Zhang, Y.
M. Zhu and J. K. Shen, Tetrahedron Lett., 2015, 56, 2349; (e) Y.
Y. Pan, Y. N. Wu, Z. Z. Chen, W. J. Hao, G. Li, S. J. Tu and B.
Jiang, J. Org. Chem., 2015, 80, 5764; (i)
NH2
N
H
51%
R= 4Me-Ph 5a
R=PhCH2 5b
7a,
7b,
49 %
Scheme 2. Synthesis of tetrazoloquinazolin-5-amine and quinazolin-4(3H)-
one
Conclusions
5
(a) Y. Wang, H. Wang, J. Peng and Q. Zhu, Org. Lett., 2011, 13,
4604; (b), Y. Wang and Q. Zhua, Adv. Synth. Catal., 2012, 354,
1902; (c) L. Hu, W. Gui, Z. Liub and B. Jiang, RSC Adv., 2014, 4,
38258; (d) V. Estévez, G. V. Baelen, B. H. Lentferink, T. Vlaar, E.
Janssen, B .U. W. Maes, R. V. A. Orru and E. Ruijter, ACS. Catal.,
2014, 4, 40; (e) B. Jiang, L. Hu and W. Gui, RSC Adv., 2014, 4,
13850.
We disclosed an easy access to the benzoimidazoquinazoline amines
framework by direct reactions of isocyanides with compounds
containing active N–H bonds utilizing inexpensive cobalt catalyst.
The methodology is highly practical and it provides
a
straightforward approach to a series of benzoimidazoquinazoline
amines. The comparison between the present cobalt-catalyzed
system with the analogous reaction under palladium catalysis [6b]
shows that both methods have advantages and disadvantages. The
pd-catalyzed system is more expensive, needs more reaction times
and should carry out in the presence of 4 Å MS. However, it must be
mentioned that aerobic oxidation with only water as a by-product in
absence of base are advantages of Pd-system. On the other hand,
cobalt-catalyzed system is cheaper, but needs K2S2O8 (1 eq) as an
oxidant, along with NaOAc (2 eq) as a base. Consequently, the Pd-
catalyzed system is more benign from a green chemistry perspective
and cobalt-catalyzed system is more acceptable from industrial point
of view.
6
(a) R. Vlaar, R. C. Cioc, P. Mampuys, B .U. W. Maes, R. V. A.
Orru and E. Ruijter, Angew. Chem. Int. Ed., 2012, 51, 13058; (b) T.
Vlaar, L. Bensch, J. Kraakman, C. M. L. V. Velde, B .U. W. Maes,
R. V. A. Orru and E. Ruijter, Adv. Synth. Catal., 2014, 356, 1205;
(c) F. Ji, M. F. Lv, W. B. Yi and C. Cai, Org. Biomol. Chem., 2014,
12, 5766.
7
8
(a) T. Nanjo, S. Yamamoto, C. Tsukano and Y. Takemoto, Org.
Lett., 2013, 15, 3754; (b)
(a) G. N. Wang, T. H. Zhu, S. Y. Wang, T. Q. Wei and S. J. Ji,
Tetrahedron, 2014, 70, 8079; (b) T. H. Zhu, S. Y. Wang, G. N.
Wang and S. J. Ji, Chem. Eur. J., 2013, 19, 5850.
9
M. S. Kharasch and E. K. Fields, J. Am. Chem. Soc., 1941, 63,
2316.
10 T. H. Zhu, X. P. Xu, J. J. Cao, T. Q. Wei and S. Y. Wang, Adv.
Synth. Catal., 2014, 356, 509.
Acknowledgements
We gratefully acknowledge financial support from the Research
11 P. Singla, V. Luxami and K. Paul, RSC Adv., 2014, 4, 12422.
12 I. Tamm, Science, 1954, 120, 847.
Council of Shahid Beheshti University.
13 I. Yildiz-Oren, I. Yalcin, E. Aki-Sener and, N. Ucarturk, Eur. J.
Med. Chem., 2004, 39, 291.
Notes and references
1
1 (a) A. Domling, Chem. Rev., 2006, 106, 17; (b) C. D. Graaff, E.
Ruijter and R. V. A. Orru, Chem. Soc. Rev., 2012, 41, 3969; (c) H.
G. O. Alvim, D. N. S. Juniorb, B. A. D. Neto, RSC Adv., 2014, 4,
54282; (d) R. C. Cioc, E. Ruijter and R. V. A. Orru, Green Chem.,
2014, 16, 2958; (e) A. V. Gulevich, A. G. Zhdanko, R. V. A. Orru
and V. G. Nenajdenko, Chem. Rev., 2010, 110, 5235.
14 M. Hranjec, M. Kralj, I. Piantanida, M. Sedic, L. Suman, K.
Pavelic and G. K. Zamola, J. Med. Chem., 2007, 50, 5696.
15 S. Ozden, D. Atabey, S. Yıldız and H. Goker, Bioorg. Med. Chem.,
2005, 13, 1587.
16 (a) R. A. Smits, M. Adami, E. P. Istyastono, O. P. Zuiderveld, C.
M. E.V. van Dam, F. J. De Kanter, A. Jongejan, G. Coruzzi, R.
Leurs and I. J. P. deEsch, J. Med. Chem., 2010, 53, 2390; (b) K. S.
Kumar, P. M. Kumar, K. A. Kumar, M. Sreenivasulu, A. A. Jafar,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012