LETTER
Diarylation of Activated Alkenes
1423
Me
Cu(OTf)2 (10 mol%)
Ph2IBF4 (2 equiv)
TEMPO (3 equiv)
(1)
Me
N
Ph
O
Me
N
DCE, 130 °C, 16 h
O
Me
1a
3a; 7% yield
Me
N
Me
N
Me
(2)
cat. 9 (10 mol%)
Ph2IBF4 (2 equiv)
Me
N
Ph
O
O
O
Me
DCE, 60 °C, 16 h
N
Cu
O
Ph
Ph
Me
3a, 50% yield, 3% ee
OTf
1a
9
Scheme 4 Control experiment and an asymmetric version of the diarylation of 1a
Chem. Commun. 2014, 50, 936. (e) Lu, Q.; Liu, C.; Peng, P.;
Liu, Z.; Fu, L.; Huang, J.; Lei, A. Asian J. Org. Chem. 2013,
3, 273. (f) Fu, W.; Xu, F.; Fu, Y.; Xu, C.; Li, S.; Zou, D. Eur.
J. Org. Chem. 2014, 709. (g) Li, L.; Deng, M.; Zheng, S.-C.;
Xiao, Y.-P.; Tan, B.; Liu, X.-Y. Org. Lett. 2014, 16, 504.
(h) Shi, L.-L.; Yang, X.-B.; Wang, Y.-Y.; Yang, H.-J.; Fu,
H. Adv. Synth. Catal. 2014, 356, 1021. (i) Fu, W.-J.; Xu,
F.-J.; Fu, Y.-Q.; Xu, C.; Li, S.-H.; Zou, D.-P. Eur. J. Org.
Chem. 2014, 709.
In summary, the copper-catalyzed diarylation of activated
alkenes by using diaryliodonium(III) salts has been devel-
oped.14 Arylated oxindoles were synthesized in yields of
40–83%. A broad applicability of this method for the con-
struction of relevant chemical entities is anticipated, and
further studies on the reaction mechanism and asymmetric
catalysis in this reaction are ongoing in our laboratory.
(8) For examples involving the N3 group, see: (a) Matcha, K.;
Narayan, R.; Antonchick, A. P. Angew. Chem. Int. Ed. 2013,
52, 7985. (b) Wei, X.-H.; Li, Y.-M.; Zhou, A.-X.; Yang, T.-
T.; Yang, S.-D. Org. Lett. 2013, 15, 4158. For examples
involving the halogen group, see: (c) Wei, H.-L.; Piou, T.;
Dufour, J.; Neuville, L.; Zhu, J.-P. Org. Lett. 2011, 13, 2244.
(d) Fabry, D. C.; Stodulski, M.; Hoerner, S.; Gulder, T.
Chem. Eur. J. 2012, 18, 10834. (e) For an example involving
diphenylphosphine oxide, see: Li, Y.-M.; Sun, M.; Wang,
H.-L.; Tian, Q.-P.; Yang, S.-D. Angew. Chem. Int. Ed. 2013,
52, 3972. For examples involving the carbonyl group, see:
(f) Zhou, M.-B.; Song, R.-J.; Ouyang, X.-H.; Liu, Y.; Wei,
W.-T.; Deng, G.-B.; Li, J.-H. Chem. Sci. 2013, 4, 2690.
(g) Wang, H.; Guo, L.-N.; Duan, X.-H. Adv. Synth. Catal.
2013, 355, 2222. For examples involving the NO2 group,
see: (h) Li, Y.-M.; Wei, X.-H.; Li, X.-A.; Yang, S.-D. Chem.
Commun. 2013, 49, 11701. (i) Shen, T.; Yuan, Y.; Jiao, N.
Chem. Commun. 2014, 50, 554. For examples involving sp3-
CH groups, see: (j) Wu, T.; Mu, X.; Liu, G.-S. Angew.
Chem. Int. Ed. 2011, 50, 12578. (k) Zhang, H.; Chen, P.-H.;
Liu, G.-H. Synlett 2012, 2749. (l) Wu, T.; Zhang, H.; Liu,
G.-S. Tetrahedron 2012, 68, 5229. (m) Wei, W.-T.; Zhou,
M.-B.; Fan, J.-H.; Liu, W.; Song, R.-J.; Liu, Y.; Hu, M.; Xie,
P.; Li, J.-H. Angew. Chem. Int. Ed. 2013, 52, 3638. (n) Xie,
J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem.
Commun. 2013, 49, 5672. (o) Meng, Y.; Guo, L.-N.; Wang,
H.; Duan, X.-H. Chem. Commun. 2013, 49, 7540. (p) Zhou,
S.-L.; Guo, L.-N.; Wang, H.; Duan, X.-H. Chem. Eur. J.
2013, 19, 12970. (q) Zhou, M.-B.; Wang, C.-Y.; Song, R.-J.;
Liu, Y.; Wei, W.-T.; Li, J.-H. Chem. Commun. 2013, 49,
10817. (r) Li, Z.; Zhang, Y.; Zhang, L.; Liu, Z.-Q. Org. Lett.
2014, 16, 382. (s) Zhang, J.-L.; Liu, Yu.; Song, R.-J.; Jiang,
G.-F.; Li, J.-H. Synlett 2014, 25, 1031. (t) For examples
involving the CF3S group, see: Yin, F.; Wang, X.-H. Org.
Lett. 2014, 16, 1128. (u) For examples involving the Ts
group, see: Li, X.-Q.; Xu, X.-S.; Hu, P.-Z.; Xiao, X.-Q.;
Zhou, C. J. Org. Chem. 2013, 78, 7343. (v) For examples
involving oxaspirocycles, see: Wang, H.; Guo, L.-N.; Duan,
X.-H. Org. Lett. 2013, 15, 5254.
Acknowledgment
This work was supported by the National Nature Science Foundati-
on of China (NSFC, 21272069, 21202186) and the Fundamental
Research Funds for the Central Universities, Key Laboratory of Or-
ganofluorine Chemistry, Shanghai Institute of Organic Chemistry,
Chinese Academy of Sciences.
Supporting Information for this article is available online
at
10.1055/s-00000083.SunpfgIpi
m
o
nr
i
References and Notes
(1) (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn.
1971, 44, 581. (b) Heck, R. F.; Nolley, J. P. Jr. J. Org. Chem.
1972, 37, 2320.
(2) Meerwein, H.; Buchner, E.; van Emsterk, K. J. Prakt. Chem.
1939, 152, 237.
(3) (a) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829.
(b) Jerphagnon, T.; Pizzuti, M. G.; Minnaard, A. J.; Feringa,
B. L. Chem. Soc. Rev. 2009, 38, 1039.
(4) (a) Phipps, R. J.; McMurray, L.; Ritter, S.; Duong, H. A.;
Gaunt, M. J. J. Am. Chem. Soc. 2012, 134, 10773.
(b) Gigant, N.; Chausset-Boissarie, L.; Belhomme, M.-C.;
Poisson, T.; Pannecoucke, X.; Gillaizeau, I. Org. Lett. 2013,
15, 278. (c) Fumagalli, G.; Boyd, S.; Greaney, M. F. Org.
Lett. 2013, 15, 4398. (d) Baralle, A.; Fensterbank, L.;
Goddard, J.-P.; Ollivier, C. Chem. Eur. J. 2013, 19, 10809.
(5) Cahard, E.; Bremeyer, N.; Gaunt, M. J. Angew. Chem. Int.
Ed. 2013, 52, 9284.
(6) Klein, J. E. M. N.; Taylor, R. J. K. Eur. J. Org. Chem. 2011,
6821.
(7) For examples involving the CF3 group, see: (a) Mu, X.; Wu,
T.; Wang, H.-Y.; Guo, Y.-L.; Liu, G.-S. J. Am. Chem. Soc.
2012, 134, 878. (b) Xu, P.; Xie, J.; Xue, Q.; Pan, C.; Cheng,
Y.; Zhu, C. Chem. Eur. J. 2013, 19, 14039. (c) Egami, H.;
Shimizu, R.; Sodeoka, M. J. Fluorine Chem. 2013, 152, 51.
(d) Yang, F.; Klumphu, P.; Liang, Y.-M.; Lipshutz, B. H.
(9) Jaegli, S.; Dufour, J.; Wei, H.-L.; Piou, T.; Duan, X.-H.;
Vors, J. P.; Neuville, L.; Zhu, J.-P. Org. Lett. 2010, 12, 4498.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 1419–1424