3
1007; (d) Dias, L. C. J. Braz. Chem. Soc. 1997, 8, 289; (e)
Maruoka, K. In Catalytic Asymmetric Synthesis (2nd Edition);
Ojama, I. Ed.; Wiley-VCH: New York, 2000; pp 467. (f) Corey, E.
J. Angew. Chem., Int. Ed. 2002, 41, 1650; (g) Hayashi, Y. In
Cycloaddition Reaction in Oraganic Synthesis; Kobayashi, S.,
Jørgensen, K. A., Eds; Wiley-VCH: Weinheim, 2002; chap. 1.
3. For selected reviews, see: (a) Notz, W.; Tanaka, F.; Barbas, C. F.
III Acc. Chem. Res. 2004, 37, 580; (b) Hayashi, Y. J. Syn. Org.
Chem. Jpn. 2005, 63, 464; (c) Mukherjee, S.; Yang, J. W.;
Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5413; (d) Akiyama,
T. Chem. Rev. 2007, 107, 5744; (e) MacMillan, D. W. C. Nature
2008, 455, 304; (f) Barbas, C. F., III Angew. Chem., Int. Ed. 2008,
47, 42; (g) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G.
Angew. Chem., Int. Ed. 2008, 47, 6138; (h) Dondoni, A.; Massi, A.
Angew. Chem., Int. Ed. 2008, 47, 4638; (i) Terada, M. Synthesis,
2010, 1929; (j) Yamashita, Y.; Kobayashi, S. In Handbook of
Cyclization Reactions; Ma, S. Ed.; Wiley-VCH: Weinheim, 2010;
Vol. 1, pp 59. (k) Kanno, T.; Maruoka, K. Bull. Chem. Soc. Jpn.
2010, 83, 1421. (l) Ramachary, D. B.; Reddy, Y V. Eur. J. Org.
Chem. 2012, 865; (m) Jensen, K. L.; Dickmeiss, G.; Jiang, H.;
Albrecht, Ł.; Jørgensen, K. A. Acc. Chem. Res. 2012, 45, 248; (n)
Arceo, E.; Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 5290;
(o) Li, J.-L.; Liu, T.-Y.; Chen, Y.-C. Acc. Chem. Res. 2012, 45,
1491; (p) Pellissier, H. Tetrahedron 2012, 68, 2197. (q) Ishihara,
K.; Sakakura, A. In Comprehensive Chirality; Carreira, E. M.,
Yamamoto, H., Eds.; Elsevier B.V.: Amsterdam, 2012; Vol. 6, pp
264. (r) Shoji, M.; Hayashi, Y. In Modern Tools for the Synthesis
of Complex Bioactive Molecules; Cossy, J., Arseniyadis, S., Eds.;
John Wiley & Sons: Hoboken, 2012; pp 189. (s) Jiang, X.; Wang,
R. Chem. Rev. 2013, 113, 5515.
Figure 1. ORTEP drawing of 6c. Displacement ellipsoids are drawn at the
50% probability level.
The absolute configuration of the cycloadduct 6c obtained
from the reaction of 1 with p-chlorocinnamaldehyde was
determined as (1S, 2S, 3R) by X-ray crystallography (Figure 1).14
In a control experiment, the use of methyl ester of proline in
place of proline resulted in a remarkable decrease of the
enantioselectivity from 83% ee to 8% ee under the conditions of
entry 1 in Table 2, showing that the carboxylic acid moiety of
proline plays an important role in determining the
enantioselectivity. Based on these results, we propose the
reaction transition state for the cycloaddition of α-amino-o-QDM
4 with iminium salt 3 (Scheme 2). Thus, the reaction should
proceed through a transition state assembly being organized by
hydrogen-bonding such as 8, thereby facilitating the approach of
o-QDM 4 to the re-face of the iminium salt 3 with an endo
orientation to give the cycloadduct 6, which is consistent with the
experimental result.
In summary, we have developed a new precursor of α-amino-
o-QDM 4 and achieved a catalytic enantioselective Diels-Alder
reaction of the o-QDM with α,β-unsaturated aldehydes.
Organotin compound 1, which can be prepared in short steps, is a
good precursor for the generation of 4 in the presence of L-
proline, which catalyzes the asymmetric Diels-Alder reaction
with dienophiles to give tetrahydronaphthalene derivatives 6 in
good yields with high to excellent diastereo- and
enantioselectivities in most cases. It has been suggested that the
stereoselectivity of the cycloaddition is dictated by the formation
of a hydrogen bond between o-QDM 4 and iminium salt 3.
4. For recent reports, see: (a) Enders, D.; Joie, C.; Deckers, K. Chem.
Eur. J. 2013, 19, 10818. (b) Wang, Z.-Y.; Wong, W.-T.; Yang, D.
Org. Lett. 2013, 15, 4980. (c) Ma, C.; Gu, J.; Teng, B.; Zhou, Q.-
Q.; Li, R.; Chen, Y.-C. Org. Lett. 2013, 15, 6206. (d) Abbasov, M.
E.; Hudson, B. M.; Tantillo, D. J.; Romo, D. J. Am. Chem. Soc.
2014, 136, 4492. (e) Weise, C. F.; Lauridsen, V. H.; Rambo, R. S.;
Iversen, E. H.; Olsen, M.-L.; Jørgensen, K. A. J. Org. Chem. 2014,
79, 3537.
5. For attempts of proline-catalyzed enantioselective Diels-Alder
reactions of 1,3-dienes, see: (a) Thayumanavan, R.: Dhevalapally,
B.; Sakthivel, K.; Tanaka, F.; Barbas, C. F., III Tetrahedron Lett.
2002, 43, 3817; (b) Ramachary, D. B.; Chowdari, N. S.; Barbas, C.
F., III Tetrahedron Lett. 2002, 43, 6743; (c) Ramachary, D. B.;
Chowdari, N. S.; Barbas, C. F., III Angew. Chem., Int. Ed. 2003,
42, 4233; (d) Sundén, H.; Ibrahem, I.; Rios, R.; Xu, Y.; Ericksson,
L.; Córdova, A. Angew. Chem., Int. Ed. 2005, 44, 4877; (e)
Sundén, H.; Ibrahem, I.; Adolfsson, H.; Córdova, A. Tetrahedron
Lett. 2005, 46, 3385; (f) Sundén, H.; Ibrahem, I.; Ericksson, L.;
Córdova, A. Adv. Synth. Catal. 2007, 349, 2549; (g) Hong, B.-C.;
Wu, M.-F.; Tseng, H.-C.; Huang, G.-F.; Su, C.-F.; Liao, J.-H. J.
Org. Chem. 2007, 72, 8459; (h) Hong, B.-C.; Tseng, H.-C.; Chen,
S.-H. Tetrahedron 2007, 63, 2840; (i) de Figueiredo, R. M.;
Frӧhlich, R.; Christmann, M. Angew. Chem., Int. Ed. 2008, 47,
1450; (j) Stowe, G. N.; Janda, K. D. Tetrahedron Lett. 2011, 52,
2085; (k) Hong, B.-C.; Dange, N. S.; Ding, C.-F.; Liao, J.-H. Org.
Lett. 2012, 14, 448; (l) Sinha, D.; Perera, S.; Zhao, C.-G. Chem.
Eur. J. 2013, 19, 6976.
Ph
H
Ph
N
NH
H
O
O
CHO
Ar
1
2
3
+
4
3
N
(1S, 2S, 3R)
Ar
8
6
Scheme 2. Proposed Reaction Transition State for the Cycloaddition.
Acknowledgments
We are grateful to Prof Hideki Amii (Gunma University) for
his useful suggestion. We also thank to Prof Ken-ichiro Kanno
(Gunma University) for supporting X-ray analysis.
6. Reviews: (a) Oppolzer, W. Synthesis 1978, 793; (b) Charlton, J.
L.; Alauddin, M. M. Tetrahedron 1987, 43, 2873; (c) Segura, J.
L.; Martin, N. Chem. Rev. 1999, 99, 3199; (d) Sano, H.;
Nishimura, J. In Science of Synthesis, Houben-Weyl Methods of
Molecular Transformations; Siegel, J. S., Tobe, Y., Eds.; Georg,
Thieme Verlag: Stuttgart, 2009: Vol. 45a, pp 483.
Supplementary data
Supplementary data associated with this article can be found,
in the online version
7. (a) Grosch, B.; Orlebar, C. N.; Herdtweck, E.; Massa, W.; Bach, T.
Angew. Chem., Int. Ed. 2003, 42, 3693; Grosch, B.; Orlebar, C.
N.; Herdtweck, E.; Kaneda, M.; Wada, T.; Inoue, Y.; Bach, T.
Chem. Eur. J. 2004, 10, 2179; (b) Takinami, M.; Ukaji, Y.;
Inomata, K. Tetrahedron: Asymmetry 2006, 17, 1554; (c) Wang,
C.; Tunge, J. A. J. Am. Chem. Soc. 2008, 130, 8118; (d) Liu. Y.;
Nappi, M.; Arceo, E.; Vera, S.; Melchiorre, P. J. Am. Chem. Soc.
2011, 133, 15212.
References and notes
1. (a) Diels, O.; Alder, K. Justus Liebigs Ann. Chem. 1928, 460, 98;
(b) Norton, J. A. Chem. Rev. 1942, 42, 319; (c) Huisgen, R.;
Grashey, R.; Sauer, J. In The Chemistry of the Alkenes; Patai, S.,
Ed.; Wiley: London, 1964; pp 739.
8. Thermolysis (benzocyclobutene: 200 °C) and anion-induced 1,4-
elimination reactions are widely used for the generation of o-
QDMs.6
2. For selected reviews, see: (a) Evans, D. A.; Johnson, J. S. In
Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer: New York, 1999; Vol. 3, pp 1177
and references therein; (b) Oppolzer, W. In Comprehensive
Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: New York,
1991; Vol. 5; (c) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92,
9. (a) Oppolzer, W.; Kelier, K. J. Am. Chem. Soc. 1971, 93, 3836; (b)
Oppolzer, W. Heterocycles 1980, 14, 1615; (c) Oppolzer, W.;
Robbiani, C. Helv. Chim. Acta 1983, 66, 1119; (d) Klemm, L. H.;
Hwang, Y. N.; Louris, J. N. J. Org. Chem. 1983, 48, 1451; (e)
Kessar, S. V.; Singh, T.; Mankotia, A. K. S. J. Chem. Soc., Chem.