4
Tetrahedron Letters
4.
(a) Nomura, Y.; Tomoda, S.; Takeuchi, Y. Chem. Lett. 1972, 79–82.
(b) Nomura, Y.; Kimura, M.; Shibata, T.; Takeuchi, Y.; Tomoda, S.
Bull. Chem. Soc. Jpn. 1982, 55, 3343–3344.
5.
Berti, C.; Greci, L.; Marchetti, L. Gazz. Chim. Ital. 1975, 105, 993–
999. See also p. 2018–2019 of ref. 1d.
6.
7.
Tillman, A. L.; Dixon, D. J. Org. Biomol. Chem. 2007, 5, 606–609.
Kashiwagi, T.; Kotani, S.; Nakajima, M.; Sugiura, M. Tetrahedron
Lett. 2014, 55, 1924–1926. For -amino alcohol synthesis using
aldehydes instead of imines, see: Kashiwagi, T.; Kotani, S.; Sugiura,
M.; Nakajima, M. Tetrahedron 2011, 67, 531–539.
8.
9.
For NMR spectra, see the Supplementary Material.
(a) Appel, R.; Mayr, H. J. Am. Chem. Soc. 2011, 133, 8240–8251. (b)
Kempf, B.; Hampel, N.; Ofial, A. R.; Mayr, H. Chem. Eur. J. 2003, 9,
2209–2218. For a review: (c) Mayr, H.; Ofial, A. R. J. Phys. Org.
Chem. 2008, 21, 584–595.
10.
The deuterium exchange of the H2 proton was also observed,
indicating transient generation of the 2,3-enamine. See NMR spectra
in the Supplementary Material.
11.
12.
The reversibility was also confirmed by other control experiments,
see the Supplementary Material.
For 1,3-diamines in chiral auxiliaries or catalysts, see: (a) Blaser, H.-
U. Chem. Rev. 1992, 92, 935–952. (b) Ozaki, S.; Mimura, H.;
Yasuhara, N.; Masui, M.; Yamagata, Y.; Tomita, K.; Collins, T. J. J.
Scheme 6. N-Sulfonyl-1,3-diamine synthesis from imine 1a
and various enamines 2.
The stereochemistry of the reduction can be rationalized by
assuming an axial attack of NaBH3CN on the iminium ion
intermediate (Figure 1).16 Because of the allylic strain between
the piperidine ring, the tosylamide side chain locates in the axial
position and hinders the equatorial attack of the reductant. The
cycloalkane moiety should be important to fix the conformation
of the iminium ion intermediate, because the reaction of enamine
2b resulted in a low selectivity (Scheme 6).
Chem. Soc., Perkin Trans.
2 1990, 353–360. (c) Pini, D.;
Mastantuono, A.; Uccello-Barretta, G.; Iuliano, A.; Salvadori, P.
Tetrahedron 1993, 49, 9613–9624. (d) Ogino, K.; Tamiya, H.;
Kimura, Y.; Azuma, H.; Tagaki, W. J. Chem. Soc., Perkin Trans. 2
1996, 979–984. (e) Reddy, P. V. G.; Tabassum, S.; Blanrue, A.;
Wilhelm, R. Chem. Commun. 2009, 5910–5912. (f) Sohtome, Y.;
Shin, B.; Horitsugi, N.; Takagi, R.; Noguchi, K.; Nagasawa, K.
Angew. Chem. Int. Ed. 2010, 49, 7299–7303. (g) Wang, W.-H.; Abe,
T.; Wang, X.-B.; Kodama, K.; Hirose, T.; Zhang, G.-Y. Tetrahedron:
Asymmetry 2010, 21, 2925–2933. (h) Zhang, H.; Liao, Y.-H.; Yuan,
W.-C.; Zhang, X.-M. Eur. J. Org. Chem. 2010, 3215–3218. (i) Wang,
W.-H.; Wang, X.-B.; Kodama, K.; Hirose, T.; Zhang, G.-Y.
Tetrahedron 2010, 66, 4970–4976. (j) Murtinho, D.; Serra, M. E. S.;
Rocha Gonsalves, A. M. d'A. Tetrahedron: Asymmetry 2010, 21, 62–
68. (k) Yao, Q. J.; Judeh, Z. M. A. Tetrahedron 2011, 67, 4086–4092.
(l) Kodama, K.; Sugawara, K.; Hirose, T. Chem. Eur. J. 2011, 17,
13584–13592. (m) Hirose, T.; Sugawara, K.; Kodama, K. J. Org.
Chem. 2011, 76, 5413–5428. (n) Groselj, U.; Ricko, S.; Svete, J.;
Stanovnik, B. Chirality 2012, 24, 412–419. (o) Csillag, K.; Szakonyi,
Z.; Fulop, F. Tetrahedron: Asymmetry 2013, 24, 553–561. (p)
Mayans, E.; Gargallo, A.; Alvarez-Larena, A.; Illa, O.; Ortuno, R. M.
Eur. J. Org. Chem. 2013, 1425–1433.
For other synthetic methods for 1,3-diamines, see: (a) Merla, B.;
Arend, M.; Risch, N. Synlett 1997, 177–178. (b) Kaiser, A.; Balbi, M.
Tetrahedron: Asymmetry 1999, 10, 1001–1014. (c) Merla, B.; Risch,
N. Synthesis 2002, 1365–1372. (d) Hou, X.-L.; Luo, Y.-M.; Yuan, K.;
Dai, L.-X. J. Chem. Soc. Perkin Trans. 1 2002, 1487–1490. (e)
Chauveau, A.; Martens, T.; Bonin, M.; Micouin, L.; Husson, H.-P.
Synthesis 2002, 1885–1890. (f) Matsubara, R.; Nakamura, Y.;
Kobayashi, S. Angew. Chem. Int. Ed. 2004, 43, 1679–1681. (g) Lanter,
J. C.; Chen, H.; Zhang, X.; Sui, Z. Org. Lett. 2005, 7, 5905–5907. (h)
Zhao, C.-H.; Liu, L.; Wang, D.; Chen, Y.-J. Eur. J. Org. Chem. 2006,
2977–2986. (i) Terada, M.; Machioka, K.; Sorimachi, K. Angew.
Chem. Int. Ed. 2006, 45, 2254–2257. (j) Terada, M.; Machioka, K.;
Sorimachi, K. Angew. Chem. Int. Ed. 2009, 48, 2553–2556. (k)
Dagousset, G.; Drouet, F.; Masson, G.; Zhu, J. Org. Lett. 2009, 11,
5546–5549. (l) Martjuga, M.; Shabashov, D.; Belyakov, S.; Liepinsh,
E.; Suna, E. J. Org. Chem. 2010, 75, 2357–2368. (m) Morgen, M.;
Bretzke, S.; Li, P.; Menche, D. Org. Lett. 2010, 12, 4494–4497.
Borch, R. F.; Bernstein, M. D.; Durst, H. J. Am. Chem. Soc. 1971, 93,
2897–2904.
Fig 1. Assumed transition state.
In summary, we have demonstrated that N-sulfonylimines and
enamines undergo an imino ene-type reaction smoothly with a
high diastereoselectivity. Hydrolysis and reduction of the imino
ene products afforded 1,2-anti--amino ketones and 1,2-anti-2,3-
syn-N-sulfonyldiamines, respectively, without decreasing the
high diastereoselectivities. Asymmetric catalysis and the
extension of this method to reactions with various electrophiles
other than imines are currently under investigation.
13.
Acknowledgments
This work was partially supported by a Grant-in-Aid for
scientific research from the Ministry of Education, Culture,
Sports, Science and Technology of Japan.
Supplementary Material
14.
15.
Supplementary data associated with this article can be found
in the online version at...
The relative configurations of both the major and second major
diastereomers of 3aa were unambiguously determined by X-ray
crystallography to be 1,2-anti-2,3-syn (Figure, left) and 1,2-syn-2,3-
syn (Figure, right), respectively. CCDC 991772 (1,2-anti-2,3-syn-
3aa) and CCDC 991773 (1,2-syn-2,3-syn-3aa) contain the
supplementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data
References and notes
1.
For leading references, see: (a) Stork, G.; Terrell, R.; Szmuszkovicz,
J. J. Am. Chem. Soc. 1954, 76, 2029–2030. (b) Stork, G.; Landesman,
H. K. J. Am. Chem. Soc. 1956, 78, 5128–5129. (c) Stork, G.;
Brizzolara, A.; Landesman, H.; Szmuszkovicz, J.; Terrell, R. J. Am.
Chem. Soc. 1963, 85, 207–222. For a review, see: (d) Hickmott, P. W.
Tetrahedron 1982, 38, 1975–2050.
2.
3.
Tomoda, S.; Takeuchi, Y.; Nomura, Y. Tetrahedron Lett. 1969, 10,
3549–3552.
For a review on imino ene reaction, see: Borzilleri, R. M.; Weinreb,
S. M. Synthesis 1995, 347–360.