Communication
ChemComm
K. Masutomi, Y. Miyauchi, M. Fukui, H. Sugiyama, H. Uekusa,
T. Satoh, M. Miura and K. Tanaka, Chem. – Eur. J., 2016, 22, 14190;
(k) L. Song, J. Xiao, W. Dong, Z. Peng and D. An, Eur. J. Org. Chem.,
2017, 341; (l) Y.-T. Li, Y. Zhu, G.-L. Tu, J.-Y. Zhang and Y.-S. Zhao,
Chem. – Asian J., 2018, 13, 3281; the Ir(III)catalysis: (m) D. A. Frasco,
C. P. Lilly, P. D. Boyle and E. A. Ison, ACS Catal., 2013, 3, 2421; the
Co(III)catalysis: (n) R. Mandal and B. Sundararaju, Org. Lett., 2017,
19, 2544; (o) T. T. Nguyen, L. Grigorjeva and O. Daugulis, Angew.
Chem., Int. Ed., 2018, 57, 1688; the Ru(II)catalysis: (p) L. Ackermann,
J. Pospech, K. Graczyk and K. Rauch, Org. Lett., 2012, 14, 930;
(q) R. K. Chinnagolla and M. Jeganmohan, Chem. Commun., 2012,
48, 2030; (r) M. Deponti, S. I. Kozhushkov, D. S. Yufit and L. Ackermann,
Org. Biomol. Chem., 2013, 11, 142; (s) K. S. Singh, S. G. Sawant and
P. H. Dixneuf, ChemCatChem, 2016, 8, 1046; (t) R. Prakash, K. Shekarrao
and S. Gogoi, Org. Lett., 2015, 17, 5264; (u) S. Warratz, C. Kornhass,
A. Cajaraville, B. Niepoetter, D. Stalke and L. Ackermann, Angew. Chem.,
Int. Ed., 2015, 54, 5513; (v) J.-L. Yu, S.-Q. Zhang and X. Hong, J. Am. Chem.
Soc., 2017, 139, 7224; (w) Y. Qiu, C. Tian, L. Massignan, T. Rogge and
L. Ackermann, Angew. Chem., Int. Ed., 2018, 57, 5818.
4 For selected papers on oxidative [4+2] annulation of benzoic acids
with other 2p components, see: (a) D. Nandi, D. Ghosh, S.-J. Chen,
B.-C. Kuo, N. M. Wang and H. M. Lee, J. Org. Chem., 2013, 78, 3445;
(b) M. Zhang, H.-J. Zhang, T. Han, W. Ruan and T.-B. Wen, J. Org.
Chem., 2015, 80, 620; (c) C. Yang, X. He, L. Zhang, G. Han, Y. Zuo and
Y. Shang, J. Org. Chem., 2017, 82, 2081; (d) W.-J. Han, F. Pu, J. Fan,
Z.-W. Liu and X.-Y. Shi, Adv. Synth. Catal., 2017, 359, 3520; (e) A. Bechtoldt,
M. E. Baumert, L. Vaccaro and L. Ackermann, Green Chem., 2018, 20, 398;
( f ) Y. Qiu, M. Stangier, T. H. Meyer, J. C. A. Oliveira and L. Ackermann,
Angew. Chem., Int. Ed., 2018, 57, 14179.
intermediate A with the aid of air affords the cation intermediate
C, which sequentially undergoes a nucleophilic reaction with
H2O, oxidation and C–H activation cascades to afford the
organometallic C–Ru(II) intermediate E. Coordination of inter-
mediate E with alkyne 2a gives intermediate F, which rapidly
executes migratory alkyne insertion to form the seven-membered
ruthena(II)cycle G.3p–w,5d,e The electronic properties of the aryl
groups might be more efficiently stabilized by the vinyl–Ru
intermediate G, thus resulting in a high regioselectivity in the
case of unsymmetrical alkynes. Finally, reductive elimination of
intermediate G delivers the desired product 3aa and the Ru(0)
complex, followed by reoxidation through anodic oxidation of the
Ru(0) complex to regenerate the active PivO-based Ru(II) species.
In summary, we have developed the first Ru(II)-catalyzed
electrooxidative [4+2] annulation of benzylic alcohols with
internal alkynes, where benzylic alcohols act as weakly directing
group precursors to enable the formation of isocoumarins through
multiple C–H functionalization. The reaction is distinguished by its
success achieved through the use of a Ru(II)-catalyzed electro-
oxidative strategy with exquisite regio- and site-selectivity, as the
conventional terminal oxidants, including Cu(II) salts, Ag(I) salts
and O2, had no effect on this event. Importantly, the reaction
features facile incorporation of an isocoumarin unit into bio-
active structural systems.
5 (a) Y. Lu, D.-H. Wang, K. M. Engle and J.-Q. Yu, J. Am. Chem. Soc.,
2010, 132, 5916; (b) X. Wang, Y. Lu, H.-X. Dai and J.-Q. Yu, J. Am. Chem.
Soc., 2010, 132, 12203; (c) Y. Lu, D. Leow, X. Wang, K. M. Engle and
J.-Q. Yu, Chem. Sci., 2011, 2, 967; (d) K. Morimoto, K. Hirano, T. Satoh
and M. Miura, J. Org. Chem., 2011, 76, 9548; (e) S. Nakanowatari and
L. Ackermann, Chem. – Eur. J., 2014, 20, 5409.
We thank the National Natural Science Foundation of China
(No. 21625203 and 21762030) for financial support.
6 For selected reviews and representative papers on the electrooxidative
transition-metal catalysis, see: (a) M. Yan, Y. Kawamata and P. S. Baran,
Chem. Rev., 2017, 117, 13230; (b) Y. Jiang, K. Xu and C. Zeng, Chem. Rev.,
2018, 118, 4485; (c) K. Liu, C. Song and A. Lei, Org. Biomol. Chem., 2018,
16, 2375; (d) N. Sauermann, T. H. Meyer, Y. Qiu and L. Ackermann, ACS
Catal., 2018, 8, 7086; (e) N. Sauermann, T. H. Meyer and L. Ackermann,
Chem. – Eur. J., 2018, 24, 16209; ( f ) N. Sauermann, T. H. Meyer, C. Tian
and L. Ackermann, J. Am. Chem. Soc., 2017, 139, 18452; (g) R. Mei,
N. Sauermann, J. C. A. Oliveira and L. Ackermann, J. Am. Chem. Soc.,
2018, 140, 7913; (h) X. Gao, P. Wang, L. Zeng, S. Tang and A. Lei, J. Am.
Chem. Soc., 2018, 140, 4195; (i) S. Tang, D. Wang, Y. Liu, L. Zeng and
A. Lei, Nat. Commun., 2018, 9, 798; ( j) N. Sauermann, R. Mei and
L. Ackermann, Angew. Chem., Int. Ed., 2018, 57, 5090; (k) C. Tian,
L. Massignan, T. H. Meyer and L. Ackermann, Angew. Chem., Int. Ed.,
2018, 57, 2383; (l) F. Xu, Y.-J. Li, C. Huang and H.-C. Xu, ACS Catal., 2018,
8, 3820; (m) T. H. Meyer, J. C. A. Oliveira, S. C. Sau, N. W. J. Ang and
L. Ackermann, ACS Catal., 2018, 8, 9140.
7 (a) T. Furuta, Y. Fukuyama and Y. Asakawa, Phytochemistry, 1986, 25, 517;
(b) H. Matsuda, M. Shimoda and M. Yoshikawa, Bioorg. Med. Chem., 1999,
7, 1445; (c) D. L. Yu, M. Suzuki, L. Xie, S. L. Morris-Natschke and K. H. Lee,
Med. Res. Rev., 2003, 23, 322; (d) C. A. Kontogiorgis, K. Savvoglou and
D. J. Hadjipavlou-Litina, J. Enzyme Inhib. Med. Chem., 2006, 21, 21;
(e) R. Cai, Y. Wu, S. Chen, H. Cui, Z. Liu, C. Li and Z. She, J. Nat. Prod.,
2018, 81, 1376.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 For selective reviews on the annulation reactions via C–H functionalization:
(a) P. Thansandote and M. Lautens, Chem. – Eur. J., 2009, 15, 5874;
(b) D. A. Colby, A. S. Tsai, R. G. Bergman and J. A. Ellman, Acc. Chem.
Res., 2012, 45, 814; (c) G. Song, F. Wang and X. Li, Chem. Soc. Rev., 2012,
41, 3651; (d) L. Ackermann, Acc. Chem. Res., 2014, 47, 281; (e) S. De Sarkar,
W. Liu, S. I. Kozhushkov and L. Ackermann, Adv. Synth. Catal., 2014,
´
˜
356, 1461; ( f ) M. Guıas and J. L. Mascarens, Angew. Chem., Int. Ed., 2016,
55, 11000; (g) Z. Wang, P. Xie and Y. Xia, Chin. Chem. Lett., 2018, 29, 47;
(h) E. N. da Silva Ju´nior, G. A. M. Jardim, R. S. Gomes, Y.-F. Liang and
L. Ackermann, Chem. Commun., 2018, 54, 7398.
2 For a review on isocoumarin synthesis via C–H functionalization, see:
P. Saikiaa and S. Gogoi, Adv. Synth. Catal., 2018, 360, 2063.
3 For papers on annulation with acid derivatives with internal alkynes
using the Pd(II) catalysis: (a) K. Ueura, T. Satoh and M. Miura, Org.
Lett., 2007, 9, 1407; (b) Y. Yu, L. Huang, W. Wu and H. Jiang, Org.
Lett., 2014, 16, 2146; (c) G. Jiang, J. Li, C. Zhu, W. Wu and H. Jiang,
Org. Lett., 2017, 19, 4440. The Rh(III)catalysis: (d) K. Ueura, T. Satoh
and M. Miura, J. Org. Chem., 2007, 72, 5362; (e) M. Shimizu,
K. Hirano, T. Satoh and M. Miura, J. Org. Chem., 2009, 74, 3478;
( f ) S. Mochida, K. Hirano, T. Satoh and M. Miura, J. Org. Chem., 2009,
74, 6295; (g) M. Itoh, M. Shimizu, K. Hirano, T. Satoh and M. Miura,
J. Org. Chem., 2013, 78, 1427; (h) Y. Unoh, K. Hirano, T. Satoh and
M. Miura, Tetrahedron, 2013, 69, 4454; (i) J. Mo, L. Wang and X. Cui,
Org. Lett., 2015, 17, 4960; ( j) E. Kudo, Y. Shibata, M. Yamazaki,
8 CCDC 1874275 (3aj) contains the supplementary crystallographic
data for this paper†.
9 (a) M. Miyazawa, S. Kumagae and H. Kameoka, J. Agric. Food Chem.,
1999, 47, 3938; (b) X. Teng, S. Maksimuk, S. Frommer and H. Yang,
Chem. Mater., 2007, 19, 36; (c) C. W. Smith, M. F. Ferger and W. Y. Chan,
J. Med. Chem., 1975, 18, 822; (d) F. N. Shirota, H. T. Nagasawa and
J. A. Elberling, J. Med. Chem., 1977, 20, 1176; (e) H. Elayadi and
H. B. Lazrek, Nucleosides, Nucleotides Nucleic Acids, 2015, 34, 433.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019