4
Tetrahedron Letters
20
21
22
23
5b
5b
6
3-MeO-C6H4CHO
3-MeO-C6H4CHO
3-MeO-C6H4CHO
3-MeO-C6H4CHO
5
82
>99
64
-
-
-
-
988
396
771
396
15
5
6
15
>99
a 0.3 mol% catalyst
bChiracel OD-H column, hexane/IPA (95/5), flow rate 0.5 mL/min, 254 nm (for 4-isopropylbenzaldehyde).13
cChiracel OD-H column, hexane/IPA (90/10), flow rate 1.0 mL/min, 254 nm (for 2-methoxybenzaldehyde). 14
dKromasil 5-cellucoat column, heptane/IPA (90/10), flow rate 0.7 mL/min, 254 nm (for 2-chlorobenzaldehyde).
A
plausible mechanism for the NHC-Rh(I)-catalyzed
arylation reaction of aldehydes is proposed in Scheme 2.15 In the
first step, transmetalation of phenylboronic acid with the rhodium
catalyst, which contains a basic oxygen and thus can accept a
proton, produces complex I (a phenylrhodium intermediate). To
confirm the formation of I the initial intermediate, complex 5a
o
was treated with 4-fluorophenylboronic acid in CDCl3 at 30 C.
(a)
(b)
When the 19F NMR spectrum of 4-F-C6H4B(OH)2 and that of the
in situ formed complex were compared, it was possible to
distinguish the chemical shifts of the F atom. The 19F NMR
spectrum of 4-F-C6H4B(OH)2 showed a characteristic resonance
at -106.25 ppm, whereas the coordinated fluorobenzene
resonance was at -111.03 ppm (Figure 2). The chelating oxygen-
containing arm in this complex can temporarily dissociate,
creating unsaturation. The coordination of the aryl-rhodium
species with aldehydes provides intermediate II, which
undergoes insertion of the C-O double bond of the aldehyde into
the C-Rh bond of II to form alkoxy-rhodium complex III. The
last step results in the release of the diarylmethanol.
Figure 2. 19F NMR (376 MHz) spectra of (a) 4-F-C6H4B(OH)2; (b) 5a + 4-F-
C6H4B(OH)2 in CDCl3 at 30 oC.
Acknowledgments
We thank Ege University Research Fund (2009/Fen/029) for
financial support of this work and the Technological and Science
Council of Türkiye (TÜBİTAK) and TUBA for a grant. We also
thank Aylin Atik and Nobel Farma/FARGEM for HPLC
analyses.
References and notes
In conclusion, chiral NHC-Rh(I) complexes 5 and 6 were
prepared and characterized by spectroscopic techniques. Their
catalytic activities were evaluated for the arylation of aldehydes.
Complexes 5a and 5b showed excellent catalytic activities for the
arylation of aldehydes. Attempts to obtain enantioselective
products by lowering the temperature, increasing the catalyst
loading or changing the ratio of the solvent system, did not
improve the ee values. In this study, high conversions were
obtained in the arylation reactions (TOF values up to 1193 h-1).
1. (a) Díez-González, S. N-Heterocyclic Carbenes from
Laboratory Curiosities to Efficient Synthetic Tools, RSC
Catalysis Series, Cambridge, 2011; (b) Tapu, D.; Dixon, D. A.;
Roe, C. Chem. Rev. 2009, 109, 3385-3407; (c) Hahn, F.E.;
Jahnke, M.C. Angew. Chem. Int. Ed. 2008, 47, 3122-3172; (d)
Nolan, S. P. N-Heterocyclic Carbenes In Synthesis, Wiley-VCH,
Weinheim, 2006; (e) Clavier, H.; Mauduit, M. Asymmetric
Catalysis with Metal N-Heterocyclic Carbene Complexes, N-
Heterocyclic Carbenes in Synthesis; Nolan, S. P. (Ed.); Wiley-
VCH, Weinheim, 2006, pp. 183-222; (f) Cavell, K. J.;
McGuinnes, D. S. Coord. Chem. Rev. 2004, 248, 671-681; (g)
César, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. Rev.
2004, 33, 619-636; (h) Crudden, C. M.; Allen, D. P. Coord.
Chem. Rev. 2004, 248, 2247-2273; (i) Dorta, R.; Stevens, E. D.;
Hoff, C. D.; Nolan, S. P. J. Am. Chem. Soc. 2003, 125, 10490-
10491; (j) Herrmann, W. A. Angew. Chem. Int. Ed. 2002, 41,
1290-1309; (k) Herrmann, W. A. Adv. Organomet. Chem. 2002,
48, 1-69; (l) Huang, J. K.; Schanz, H. J.; Stevens, E. D.; Nolan,
S. P. Organometallics, 1999, 18, 2370-2375.
2. (a) Metallinos, C.; Du, X. Organometallics 2009, 28, 1233-
1242; (b) Baskakov, D., Herrmann, W.A.; Herdtweck, E.;
Hoffmann, S. D. Organometallics 2007, 26, 626-632; (c)
Corberán, R.; Lillo, V.; Mata, J. A.; Fernandez, E.; Peris, E.
Organometallics 2006, 26, 4350-4353; (d) Herrmann, W. A.;
Goossen, L. J.; Köcher, C.; Artus, G. R. J. Angew. Chem. Int.
Ed. 1996, 35, 2805-2807; (e) Enders, D.; Gielen, H.; Raabe, G.;
Runsink, J.; Teles, J. H. Chem. Ber. 1996, 129, 1483-1488; (f)
Enders, D.; Gielen, H.; Runsink, J.; Breuer, K.; Brode, S.; Boehn,
K. Eur. J. Inorg. Chem. 1998, 913-919.
Scheme 2. A possible mechanism for the arylation reaction
catalyzed by rhodium complexes.
3. (a) Rix, D.; Labat, S.; Toupet, L.; Crévisy, C.; Mauduit, M.
Eur. J. Inorg. Chem. 2009, 1989-1999; (b) Martin, D.; Kehrli, S.;
d’Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis, A. J. Am.
Chem. Soc. 2006, 128, 8416-8417; (c) Becht, J.-M.; Bappert, E.;
Helmchen, G. Adv. Synth. Catal. 2005, 347, 1495-1498; (d)