10.1002/anie.202108818
Angewandte Chemie International Edition
RESEARCH ARTICLE
[9]
Selected examples of carbothiolation: a) K. Sugoh, H. Kuniyasu, T.
Sugae, A. Ohtaka, Y. Takai, A. Tanaka, C. Machino, N. Kambe, H.
Kurosawa, J. Am. Chem. Soc. 2001, 123, 5108–5109; b) R. Hua, H.
Takeda, S.-y Onozawa, Y. Abe, M. Tanaka, Org. Lett. 2007, 9, 263–266;
c) M. Iwasaki, D. Fujino, T. Wada, A. Kondoh, H. Yorimitsu, K. Oshima,
Chem. Asian J. 2011, 6, 3190–3194; d) J. F. Hooper, A. B. Chaplin, C.
González-Rodríguez, A. L. Thompson, A. S. Weller, M. C. Willis, J. Am.
Chem. Soc. 2012, 134, 2906–2909; e) M. Arisawa, S. Tanii, T. Yamada,
M. Yamaguchi, Tetrahedron 2015, 71, 6449–6458; f) F. Sun, M. Li, C.
He, B. Wang, B Li, X. Sui, Z. Gui, J. Am. Chem. Soc. 2016, 138, 7456–
7459.
[20] a) C.-S. Li, C.-H. Cheng, F.-L. Liao, S.-L. Wang, J. Chem. Soc., Chem.
Commun. 1991, 710–712; b) R. C. Larock, S. S. Hershberger, K. Takagi,
M. A. Mitchel, J. Org. Chem. 1986, 51, 2450–2457.
[21] J. F. Hartwig, Organotransition Metal Chemistry, from Bonding to
Catalysis, University Science Books, New York, 2009.
[22] a) D. A. Petrone, M. Lischka, M. L. Lautens, Angew. Chem. Int. Ed. 2013,
52, 10635–10638; Angew. Chem. 2013, 125, 10829–10832; b) X. Shen,
A. M. Hyde, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 14076–
14078; c) V. V. Glushin, W. J. Marshall, J. Am. Chem. Soc. 2006, 128,
12644–12645; d) M. C. Nielsen, K. J. Bonney, F. Schoenebeck, Angew.
Chem. Int. Ed. 2014, 53, 5903–5906; Angew. Chem. 2014, 126, 6013–
6016; e) E. J. Cho, T. D. Senecal, T. Kinzel, Y. Zhang, D. A. Watson, S.
L. Buchwald, Science 2010, 328, 1679–1681.
[10] a) B. Rao, J. Tang, X. Zeng, Org. Lett. 2016, 18, 1678–1681; b) A. M.
Dreis, C. J. Douglas, J. Am. Chem. Soc. 2009, 131, 412–413; c) C. M.
Rathbun, J. B. Johnson, J. Am. Chem. Soc. 2011, 133, 2031–2033; d) J.
P Lutz, C. M. Rathbun, S. M. Stevenson, B. M. Powell, T. S. Boman, C.
E. Baxter, J. M. Zona, J. B. Johnson, J. Am. Chem. Soc. 2011, 134, 715–
722; e) Z.-Q. Rong, H. N. Lim, G. Dong, Angew. Chem. Int. Ed. 2018, 57,
475–479; Angew. Chem. 2018, 130, 484–488.
[23] The fluorinated ligand dArFpe also reacted with NBE at 125 °C to give
(trans, endo)-22 in 82% yield. See ref. 8f and 22d.
[24] P. Pracht, F. Bohle, S. Grimme, Phys. Chem. Chem. Phys. 2020, 22,
7169–7192.
[25] Gaussianꢁ09, RevisionꢁD.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
G. A. Petersson, H. Nakatsuji, et al., Gaussian Inc., Wallington, CT, 2016.
See SI for full reference.
[11] M. T. Wentzel, V. J. Reddy, T. K. Hyster, and C. J. Douglas, Angew.
Chem. Int. Ed. 2009, 48, 6121–6123; Angew. Chem. 2009, 121, 6237–
6239.
[12] a) T. Iwai, T. Fujihara, J. Terao, Y. Tsuji, J. Am. Chem. Soc. 2012, 134,
1268–1274; b) T. Iwai, T. Fujihara, J. Terao, Y. Tsuji, J. Am. Chem. Soc.
2009, 131, 6668–6669; c) T. Yasukawa, T. Satoh, M. Miura, M. Nomura,
J. Am. Chem. Soc. 2002, 124, 12680-12681; d) R. Hua, S. Shimada, M.
Tanaka, J. Am. Chem. Soc. 1998, 120, 12365–12366; e) R. Hua, S.
Onozawa, M. Tanaka, Chem. Eur. J. 2005, 11, 3621–3630.
[26] “Popular Integration Grids Can Result in Large Errros in DFT-Computed
Free Energies”: A. N. Bootsma, S. Wheeler, ChemRxiv
[27] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–
3868.
[28] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396–
1396.
[13] a) Y. H. Lee, E. H. Denton, B. Morandi, Nat. Chem. 2021, 13, 123–130;
b) Y. H. Lee, E. H. Denton, B. Morandi, J. Am. Chem. Soc. 2020, 142,
20948–20955 and references therein.
[29] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170.
[30] M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999, 110, 5029–5036.
[31] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132,
154104.
[14] a) S. Patai, The Chemistry of Acyl Halides, Interscience, London, 1972;
b) R. K. Dieter, Tetrahedron 1999, 55, 4177–4236; c) C. A. G. N.
Montalbetti, V. Falque, Tetrahedron 2005, 61, 10827–10852.
[32] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–
1465.
[15] a) L. Wu, Q. Liu, R. Jackstell, M. Beller, Angew. Chem. Int. Ed. 2014, 53,
6310–6320; Angew. Chem. 2014, 126, 6426–6436; b) S. D. Friis, A. T.
Lindhardt, T. Skrydstrup, Acc. Chem. Res. 2016, 49, 594–605; c) P.
Hermange, A. T. Lindhardt, R. H. Taaning, K. Bjerglund, D. Lupp, T.
Skrydstrup, J. Am. Chem. Soc. 2011, 133, 6061–6071; d) T. Morimoto,
K. Kakiuchi, Angew. Chem. Int. Ed. 2004, 43, 5580–5588; Angew. Chem.
2004, 116, 5698–5706; e) X. Wang, M. Nakajima, E. Serrano, R. Martin,
J. Am. Chem. Soc. 2016, 138, 15531–15534.
[33] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
[34] F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057.
[35] R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem.
B 2011, 115, 14556–14562.
[36] G. Luchini, J. V. Alegre-Requena, I. Funes-Ardoiz, R. S. Paton,
F1000Research 2020, 9, 291.
[37] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113,
6378–6396.
[16] a) X. Fang, B. Cacherat, B. Morandi, Nat. Chem. 2017, 9, 1105–1109; b)
Y. H. Lee, B. Morandi, Nat. Chem. 2018, 10, 1016–1022; c) P. Boehm,
S. Roediger, A. Bismuto, B. Morandi, Angew. Chem. Int. Ed. 2020, 59,
17887–17896; Angew. Chem. 2020, 132, 18043–18052.
[38] C. Y.
Legault,
CYLview20,
Université
de
[39] See SI for further computational details.
[17] a) T. Sugihara, T. Satoh, M. Miura, M. Nomura, Adv. Synth. Catal. 2004,
346, 1765–1772; b) C. A. Malapit, N. Ichiishi, M. S. Sanford, Org. Lett.
2017, 19, 4142–4145; c) K. Kokubo, K. Matsumasa, M. Miura, M.
Nomura, J. Org. Chem. 1996, 61, 6941–6946; d) A. Schoenberg, R. F.
Heck, J. Am. Chem. Soc. 1974, 96, 7761–7764; e) N. Della Ca, M.
Fontana, E. Motti, M. Catellani, Acc. Chem. Res. 2016, 49, 1389–1400;
f) J. Wang, G. Dong, Chem. Rev. 2019, 119, 7478–7528.
[40] M. A. Zuideveld, B. H. G. Swennenhuis, M. D. K. Boele, Y. Guari, G. P.
F. van Strijdonck, J. N. H. Reek, P. C. J. Kamer, K. Goubitz, J. Fraanje,
M. Lutz, A. L. Speck, P. W. N. M. van Leeuwen, J. Chem. Soc. Dalt.
Trans. 2002, 2308.
[41] X.-P. Fu, X.-S. Xue, X.-Y. Zhang, Y.-L. Xiao, S. Zhang, Y.-L. Guo, X.
Leng, K. N. Houk, X. Zhang, Nat. Chem. 2019, 11, 948–956.
[42] A. M. Johns, M. Utsunomiya, C. D. Incarvito, J. F. Hartwig, J. Am. Chem.
Soc. 2006, 128, 1828–1839.
[18] a) C. Coperet, T. Sugihara, G. Wu, I. Shimoyama, E. Negishi, J. Am.
Chem. Soc. 1995, 117, 3422–3431; b) J. M. Tour, E. Negishi, J. Am.
Chem. Soc. 1985, 107, 8289–8291; c) T. Sugihara, C. Coperet, Z.
Owczarczyk, L. S. Harring, E. Negishi, J. Am. Chem. Soc. 1994, 116,
7923–7924; d) J. Tsuji, M. Morikawa, J. Kiji, J. Am. Chem. Soc. 1964, 86,
4851–4853; e) N. Bénard, M. C. Bonnet, S. Lécolier, I. Tkatchenko, J.
Chem. Soc., Chem. Commun. 1993, 1448–1450.
[43] P. R. Khoury, J. D. Goddard, W. Tam, Tetrahedron 2004, 60, 8103–8112.
[44] a) D. Gauthier, A. T. Lindhardt, E. P. K. Olsen, J. Overgaard, T.
Skrydstrup, J. Am. Chem. Soc. 2010, 132, 7998–8009; b) M. Jean, J.
Renault, P. Uriac, M. Capet, P. van de Weghe, Org. Lett. 2007, 9, 3623–
3625.
[45] J. G. Martin, R. K. Hill, Chem. Rev. 1961, 61, 537–562.
[46] a) M. J. Koh, K. M. Khan, S. Torker, A. H. Hoveyda, Angew. Chem. Int.
Ed. 2014, 53, 1968–1972; Angew. Chem. 2014, 126, 1999–2003; b) Z.
Liu, J. D. Rainer, Org. Lett. 2005, 7, 131-133; c) G. M. Weeresakare, Z.
Liu, J. D. Rainer, Org. Lett. 2004, 6, 1625–1627; J. M. Berlin, S. D.
Goldberg, R. H. Grubbs, Angew. Chem. Int. Ed. 2006, 45, 7591–7595;
Angew. Chem. 2006, 118, 7753–7757.
[19] a) M. De La Higuera Macias, B. A. Arndtsen, J. Am. Chem. Soc. 2018,
140, 10140–10144; b) G. M. Torres, Y. Liu, B. A. Arndtsen, Science 2020,
368, 318–323; c) J. S. Quesnel, B. A. Arndtsen, J. Am. Chem. Soc. 2013,
135, 16841−16844; d) J. S. Quesnel, S. Moncho, K. E. I Ylijoki, G. M.
Torres, E. N. Nrothers, A. A. Bengali, B. A. Arndtsen, Chem. Eur. J. 2016,
22, 15107–15118; e) J. S. Quesnel, L. V. Kayser, Fabrikant, B. A.
Arndtsen, Chem. Eur. J. 2015, 21, 9550–9555; f) J. S. Quesnel, B. A.
Arndtsen, J. Am. Chem. Soc. 2013, 135, 16841–16844.
7
This article is protected by copyright. All rights reserved.